Skip to main content

Particle-Based Shape Modeling for Arbitrary Regions-of-Interest

  • Conference paper
  • First Online:
Shape in Medical Imaging (ShapeMI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14350))

Included in the following conference series:

  • 440 Accesses

Abstract

Statistical Shape Modeling (SSM) is a quantitative method for analyzing morphological variations in anatomical structures. These analyses often necessitate building models on targeted anatomical regions of interest to focus on specific morphological features. We propose an extension to particle-based shape modeling (PSM), a widely used SSM framework, to allow shape modeling to arbitrary regions of interest. Existing methods to define regions of interest are computationally expensive and have topological limitations. To address these shortcomings, we use mesh fields to define free-form constraints, which allow for delimiting arbitrary regions of interest on shape surfaces. Furthermore, we add a quadratic penalty method to the model optimization to enable computationally efficient enforcement of any combination of cutting-plane and free-form constraints. We demonstrate the effectiveness of this method on a challenging synthetic dataset and two medical datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Atkins, P.R., et al.: Prediction of femoral head coverage from articulated statistical shape models of patients with developmental dysplasia of the hip. J. Orthop. Res. 40(9), 2113–2126 (2022). https://doi.org/10.1002/jor.25227

    Article  Google Scholar 

  2. Atkins, P.R., et al.: Quantitative comparison of cortical bone thickness using correspondence-based shape modeling in patients with cam femoroacetabular impingement. J. Orthop. Res. 35(8), 1743–1753 (2017)

    Article  MathSciNet  Google Scholar 

  3. Atkins, P.R., et al.: Which two-dimensional radiographic measurements of cam femoroacetabular impingement best describe the three-dimensional shape of the proximal femur? Clin. Orthop. Relat. Res. 477(1), 242 (2019)

    Article  MathSciNet  Google Scholar 

  4. Audenaert, E.A., Pattyn, C., Steenackers, G., De Roeck, J., Vandermeulen, D., Claes, P.: Statistical shape modeling of skeletal anatomy for sex discrimination: Their training size, sexual dimorphism, and asymmetry. Front. in Bioeng. Biotechnol. 7 (2019). DOI: https://doi.org/10.3389/fbioe.2019.00302,https://www.frontiersin.org/articles/10.3389/fbioe.2019.00302

  5. Bhalodia, R., Dvoracek, L.A., Ayyash, A.M., Kavan, L., Whitaker, R., Goldstein, J.A.: Quantifying the severity of metopic craniosynostosis: a pilot study application of machine learning in craniofacial surgery. J. Craniofac. Surg. 31(3), 697–701 (2020). https://doi.org/10.1097/SCS.0000000000006215

    Article  Google Scholar 

  6. Bruse, J.L.: A statistical shape modelling framework to extract 3D shape biomarkers from medical imaging data: assessing arch morphology of repaired coarctation of the aorta. BMC Med. Imaging 16, 1–19 (2016)

    Article  Google Scholar 

  7. Carriere, N., et al.: Apathy in Parkinson’s disease is associated with nucleus accumbens atrophy: a magnetic resonance imaging shape analysis. Mov. Disord. 29(7), 897–903 (2014)

    Article  Google Scholar 

  8. Cates, J., et al.: Computational shape models characterize shape change of the left atrium in atrial fibrillation. Clin. Med. Insights: Cardiol. 8s1, CMC.S15710 (2014). https://doi.org/10.4137/CMC.S15710

    Article  Google Scholar 

  9. Cates, J., Elhabian, S., Whitaker, R.: ShapeWorks. In: Statistical Shape and Deformation Analysis, pp. 257–298. Elsevier (2017). https://doi.org/10.1016/B978-0-12-810493-4.00012-2

    Chapter  Google Scholar 

  10. Cates, J., Fletcher, P.T., Styner, M., Shenton, M., Whitaker, R.: Shape modeling and analysis with entropy-based particle systems. In: Karssemeijer, N., Lelieveldt, B. (eds.) Information Processing in Medical Imaging: 20th International Conference, IPMI 2007, Kerkrade, The Netherlands, July 2-6, 2007. Proceedings, pp. 333–345. Springer, Berlin, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73273-0_28

    Chapter  Google Scholar 

  11. Datar, M., Cates, J., Fletcher, P.T., Gouttard, S., Gerig, G., Whitaker, R.: Particle based shape regression of open surfaces with applications to developmental neuroimaging. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2009, pp. 167–174. Springer, Berlin, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04271-3_21

    Chapter  Google Scholar 

  12. Davies, R.H., Twining, C.J., Cootes, T.F., Waterton, J.C., Taylor, C.J.: A minimum description length approach to statistical shape modeling. IEEE Trans. Med. Imaging 21(5), 525–537 (2002)

    Article  MATH  Google Scholar 

  13. Harris, M.D., Datar, M., Whitaker, R.T., Jurrus, E.R., Peters, C.L., Anderson, A.E.: Statistical shape modeling of cam femoroacetabular impingement. J. Orthop. Res. 31(10), 1620–1626 (2013). https://doi.org/10.1002/jor.22389

    Article  Google Scholar 

  14. Jacxsens, M., et al.: Thinking outside the glenohumeral box: Hierarchical shape variation of the periarticular anatomy of the scapula using statistical shape modeling. J. Orthop. Res. 38(10), 2272–2279 (2020). https://doi.org/10.1002/jor.24589

    Article  Google Scholar 

  15. Jacxsens, M., Elhabian, S.Y., Brady, S.E., Chalmers, P.N., Tashjian, R.Z., Henninger, H.B.: Coracoacromial morphology: a contributor to recurrent traumatic anterior glenohumeral instability? J. Shoulder Elbow Surg. 28(7), 1316–1325 (2019)

    Article  Google Scholar 

  16. Lenz, A.L.: Statistical shape modeling of the talocrural joint using a hybrid multi-articulation joint approach. Sci. Rep. 11(1),(2021). https://doi.org/10.1038/s41598-021-86567-7

  17. Merle, C., et al.: How many different types of femora are there in primary hip osteoarthritis? an active shape modeling study. J. Orthop. Res. 32(3), 413–422 (2014)

    Article  Google Scholar 

  18. Merle, C., et al.: High variability of acetabular offset in primary hip osteoarthritis influences acetabular reaming-a computed tomography-based anatomic study. J. Arthroplasty 34(8), 1808–1814 (2019)

    Article  Google Scholar 

  19. Sarkalkan, N., Weinans, H., Zadpoor, A.A.: Statistical shape and appearance models of bones. Bone 60, 129–140 (2014)

    Article  Google Scholar 

  20. Thompson, D.W., et al.: On growth and form. On growth and form. (1942)

    Google Scholar 

  21. van Buuren, M., et al.: Statistical shape modeling of the hip and the association with hip osteoarthritis: a systematic review. Osteoarthritis and Cartilage 29(5), 607–618 (2021). https://doi.org/10.1016/j.joca.2020.12.003,https://www.sciencedirect.com/science/article/pii/S106345842031219X

  22. Zachow, S.: Computational planning in facial surgery. Facial Plast. Surg. 31(05), 446–462 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, H., Morris, A., Elhabian, S.Y. (2023). Particle-Based Shape Modeling for Arbitrary Regions-of-Interest. In: Wachinger, C., Paniagua, B., Elhabian, S., Li, J., Egger, J. (eds) Shape in Medical Imaging. ShapeMI 2023. Lecture Notes in Computer Science, vol 14350. Springer, Cham. https://doi.org/10.1007/978-3-031-46914-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46914-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46913-8

  • Online ISBN: 978-3-031-46914-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics