Abstract
We present novel learning-based spherical registration using the spherical harmonics. Our goal is to achieve a continuous and smooth warp field that can effectively facilitate precise cortical surface registration. Conventional spherical registration typically involve sequential procedures for rigid and non-rigid alignments, which can potentially introduce substantial warp distortion. By contrast, the proposed method aims at joint optimization of both types of alignments. Inspired by a recent study that represents a rotation by 6D parameters as a continuous form in the Euclidean domain, we extend the idea to encode and regularize a velocity field. Specifically, a local velocity is represented by a single rotation with 6D parameters that can vary smoothly over the unit sphere via spherical harmonic decomposition, yielding smooth, spatially varying rotations. To this end, our method can lead to a significant reduction in warp distortion. We also incorporate a spherical convolutional neural network to achieve fast registration in an unsupervised manner. In the experiments, we compare our method with popular spherical registration methods on a publicly available human brain dataset. We show that the proposed method can significantly reduce warp distortion without sacrificing registration accuracy.
S. Lee and S. Ryu—Contributed equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
A full list can be found at https://mindboggle.readthedocs.io/en/latest/labels.html.
References
Barbaroux, H., Feng, X., Yang, J., Laine, A.F., Angelini, E.D.: Encoding human cortex using spherical CNNs-a study on Alzheimer’s disease classification. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 1322–1325. IEEE (2020)
Bayrak, R.G., Lyu, I., Chang, C.: Learning subject-specific functional parcellations from cortical surface measures. In: International Workshop on PRedictive Intelligence In MEdicine, pp. 172–180. Springer (2022). https://doi.org/10.1007/978-3-031-16919-9_16
Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Stat. Soc.: Ser. B (Methodol.) 57(1), 289–300 (1995)
Cheng, J., Dalca, A.V., Fischl, B., Zöllei, L., Initiative, A.D.N., et al.: Cortical surface registration using unsupervised learning. Neuroimage 221, 117161 (2020)
Chung, M.K.: Heat kernel smoothing on unit sphere. In: 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006, pp. 992–995. IEEE (2006)
Fischl, B.: Freesurfer. Neuroimage 62(2), 774–781 (2012)
Fischl, B., Sereno, M.I., Tootell, R.B., Dale, A.M.: High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum. Brain Mapp. 8(4), 272–284 (1999)
Glaunès, J., Vaillant, M., Miller, M.I.: Landmark matching via large deformation diffeomorphisms on the sphere. J. Math. Imaging Vis. 20(1), 179–200 (2004)
Ha, S., Lyu, I.: SPHARM-Net: Spherical harmonics-based convolution for cortical parcellation. IEEE Trans. Med. Imaging 41(10), 2739–2751 (2022)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (ICLR) (2015)
Klein, A., Tourville, J.: 101 labeled brain images and a consistent human cortical labeling protocol. Front. Neurosci. 6, 171 (2012)
Lyu, I., et al.: Labeling lateral prefrontal sulci using spherical data augmentation and context-aware training. Neuroimage 229, 117758 (2021)
Lyu, I., Kang, H., Woodward, N.D., Styner, M.A., Landman, B.A.: Hierarchical spherical deformation for cortical surface registration. Med. Image Anal. 57, 72–88 (2019)
Lyu, I., et al.: Robust estimation of group-wise cortical correspondence with an application to macaque and human neuroimaging studies. Front. Neurosci. 9, 210 (2015)
Ngo, G.H., Khosla, M., Jamison, K., Kuceyeski, A., Sabuncu, M.R.: From connectomic to task-evoked fingerprints: individualized prediction of task contrasts from resting-state functional connectivity. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 62–71. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_7
Parvathaneni, P., et al.: Cortical Surface Parcellation Using Spherical Convolutional Neural Networks. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 501–509. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_56
Robinson, E.C., et al.: MSM: a new flexible framework for multimodal surface matching. Neuroimage 100, 414–426 (2014)
Sedlar, S., Alimi, A., Papadopoulo, T., Deriche, R., Deslauriers-Gauthier, S.: A spherical convolutional neural network for white matter structure imaging via dMRI. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 529–539. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_50
Seong, S.B., Pae, C., Park, H.J.: Geometric convolutional neural network for analyzing surface-based neuroimaging data. Front. Neuroinform. 12, 42 (2018)
Sinzinger, F.L., Moreno, R.: Reinforcement learning based tractography with so (3) equivariant agents. In: Geometric Deep Learning in Medical Image Analysis (2022)
Suliman, M.A., Williams, L.Z., Fawaz, A., Robinson, E.C.: A deep-discrete learning framework for spherical surface registration. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 119–129. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16446-0_12
Van Essen, D.C.: A population-average, landmark-and surface-based (PALS) atlas of human cerebral cortex. Neuroimage 28(3), 635–662 (2005)
Willbrand, E.H., et al.: Uncovering a tripartite landmark in posterior cingulate cortex. Sci. Adv. 8(36), eabn9516 (2022)
Yeo, B.T., Sabuncu, M.R., Vercauteren, T., Ayache, N., Fischl, B., Golland, P.: Spherical demons: fast diffeomorphic landmark-free surface registration. IEEE Trans. Med. Imaging 29(3), 650–668 (2009)
Yu, C., et al.: Validation of group-wise registration for surface-based functional MRI analysis. In: Proceedings of SPIE-the International Society for Optical Engineering, vol. 11596. NIH Public Access (2021)
Zhao, F., et al.: S3Reg: superfast spherical surface registration based on deep learning. IEEE Trans. Med. Imaging 40(8), 1964–1976 (2021)
Zhao, F., et al.: Spherical U-net on cortical surfaces: methods and applications. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 855–866. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_67
Zhou, Y., Barnes, C., Lu, J., Yang, J., Li, H.: On the continuity of rotation representations in neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5745–5753 (2019)
Acknowledgments
This work was supported in part by the NRF under Grant RS-2023-00251298 and RS-2023-00266120, in part by the IITP under Grant 2020-0-01336, the Artificial Intelligence Graduate School Program, UNIST.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Lee, S., Ryu, S., Lee, S., Lyu, I. (2023). Unsupervised Learning of Cortical Surface Registration Using Spherical Harmonics. In: Wachinger, C., Paniagua, B., Elhabian, S., Li, J., Egger, J. (eds) Shape in Medical Imaging. ShapeMI 2023. Lecture Notes in Computer Science, vol 14350. Springer, Cham. https://doi.org/10.1007/978-3-031-46914-5_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-46914-5_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-46913-8
Online ISBN: 978-3-031-46914-5
eBook Packages: Computer ScienceComputer Science (R0)