Skip to main content

ADASSM: Adversarial Data Augmentation in Statistical Shape Models from Images

  • Conference paper
  • First Online:
Shape in Medical Imaging (ShapeMI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14350))

Included in the following conference series:

Abstract

Statistical shape models (SSM) have been well-established as an excellent tool for identifying variations in the morphology of anatomy across the underlying population. Shape models use consistent shape representation across all the samples in a given cohort, which helps to compare shapes and identify the variations that can detect pathologies and help in formulating treatment plans. In medical imaging, computing these shape representations from CT/MRI scans requires time-intensive preprocessing operations, including but not limited to anatomy segmentation annotations, registration, and texture denoising. Deep learning models have demonstrated exceptional capabilities in learning shape representations directly from volumetric images, giving rise to highly effective and efficient Image-to-SSM networks. Nevertheless, these models are data-hungry and due to the limited availability of medical data, deep learning models tend to overfit. Offline data augmentation techniques, that use kernel density estimation based (KDE) methods for generating shape-augmented samples, have successfully aided Image-to-SSM networks in achieving comparable accuracy to traditional SSM methods. However, these augmentation methods focus on shape augmentation, whereas deep learning models exhibit image-based texture bias resulting in sub-optimal models. This paper introduces a novel strategy for on-the-fly data augmentation for the Image-to-SSM framework by leveraging data-dependent noise generation or texture augmentation. The proposed framework is trained as an adversary to the Image-to-SSM network, augmenting diverse and challenging noisy samples. Our approach achieves improved accuracy by encouraging the model to focus on the underlying geometry rather than relying solely on pixel values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdollahi, B., Tomita, N., Hassanpour, S.: Data augmentation in training deep learning models for medical image analysis. In: Nanni, L., Brahnam, S., Brattin, R., Ghidoni, S., Jain, L.C. (eds.) Deep Learners and Deep Learner Descriptors for Medical Applications. ISRL, vol. 186, pp. 167–180. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-42750-4_6

    Chapter  Google Scholar 

  2. Adams, J., Bhalodia, R., Elhabian, S.: Uncertain-DeepSSM: from images to probabilistic shape models. In: Reuter, M., Wachinger, C., Lombaert, H., Paniagua, B., Goksel, O., Rekik, I. (eds.) ShapeMI 2020. LNCS, vol. 12474, pp. 57–72. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61056-2_5

    Chapter  Google Scholar 

  3. Adams, J., Elhabian, S.: From images to probabilistic anatomical shapes: a deep variational bottleneck approach. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. LNCS, vol. 13432. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16434-7_46

  4. Adams, J., Elhabian, S.: Fully bayesian vib-deepssm. arXiv preprint arXiv:2305.05797 (2023)

  5. Bhalodia, R., Dvoracek, L.A., Ayyash, A.M., Kavan, L., Whitaker, R., Goldstein, J.A.: Quantifying the severity of metopic craniosynostosis: a pilot study application of machine learning in craniofacial surgery. J. Craniofac. Surg. 31(3), 697 (2020)

    Article  Google Scholar 

  6. Bhalodia, R., Elhabian, S., Adams, J., Tao, W., Kavan, L., Whitaker, R.: DeepSSM: A blueprint for image-to-shape deep learning models. arXiv preprint arXiv:2110.07152 (2021)

  7. Bhalodia, R., Elhabian, S.Y., Kavan, L., Whitaker, R.T.: DeepSSM: a deep learning framework for statistical shape modeling from raw images. In: Reuter, M., Wachinger, C., Lombaert, H., Paniagua, B., Lüthi, M., Egger, B. (eds.) ShapeMI 2018. LNCS, vol. 11167, pp. 244–257. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04747-4_23

    Chapter  Google Scholar 

  8. Bhalodia, R., et al.: Deep learning for end-to-end atrial fibrillation recurrence estimation. In: 2018 Computing in Cardiology Conference (CinC). vol. 45, pp. 1–4. IEEE (2018)

    Google Scholar 

  9. Bharath, K., Kurtek, S., Rao, A., Baladandayuthapani, V.: Radiologic image-based statistical shape analysis of brain tumours. J. R. Stat. Soc. Ser. C, Appl. Stat. 67(5), 1357 (2018)

    Google Scholar 

  10. Cates, J., Elhabian, S., Whitaker, R.: ShapeWorks: particle-based shape correspondence and visualization software. In: Statistical Shape and Deformation Analysis, pp. 257–298. Elsevier (2017)

    Google Scholar 

  11. Chlap, P., Min, H., Vandenberg, N., Dowling, J., Holloway, L., Haworth, A.: A review of medical image data augmentation techniques for deep learning applications. J. Med. Imaging Radiat. Oncol. 65(5), 545–563 (2021)

    Article  Google Scholar 

  12. Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: AutoAugment: Learning augmentation policies from data. arXiv preprint arXiv:1805.09501 (2018)

  13. Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M., Lempitsky, V.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2096–2030 (2016)

    Google Scholar 

  14. Gao, Y., Tang, Z., Zhou, M., Metaxas, D.: Enabling data diversity: efficient automatic augmentation via regularized adversarial training. In: Feragen, A., Sommer, S., Schnabel, J., Nielsen, M. (eds.) IPMI 2021. LNCS, vol. 12729, pp. 85–97. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78191-0_7

    Chapter  Google Scholar 

  15. Gardner, G., Morris, A., Higuchi, K., MacLeod, R., Cates, J.: A point-correspondence approach to describing the distribution of image features on anatomical surfaces, with application to atrial fibrillation. In: 2013 IEEE 10th International Symposium on Biomedical Imaging, pp. 226–229. IEEE (2013)

    Google Scholar 

  16. Geiping, J., Goldblum, M., Somepalli, G., Shwartz-Ziv, R., Goldstein, T., Wilson, A.G.: How much data are augmentations worth? An investigation into scaling laws, invariance, and implicit regularization. arXiv preprint arXiv:2210.06441 (2022)

  17. Gerig, G., Styner, M., Jones, D., Weinberger, D., Lieberman, J.: Shape analysis of brain ventricles using SPHARM. In: Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA 2001), pp. 171–178. IEEE (2001)

    Google Scholar 

  18. Harris, M.D., Datar, M., Whitaker, R.T., Jurrus, E.R., Peters, C.L., Anderson, A.E.: Statistical shape modeling of cam femoroacetabular impingement. J. Orthop. Res. 31(10), 1620–1626 (2013)

    Article  Google Scholar 

  19. Hermann, K., Chen, T., Kornblith, S.: The origins and prevalence of texture bias in convolutional neural networks. Adv. Neural. Inf. Process. Syst. 33, 19000–19015 (2020)

    Google Scholar 

  20. Hussain, Z., Gimenez, F., Yi, D., Rubin, D.: Differential data augmentation techniques for medical imaging classification tasks. In: AMIA Annual Symposium Proceedings. vol. 2017, p. 979. American Medical Informatics Association (2017)

    Google Scholar 

  21. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)

    Article  Google Scholar 

  22. Tóthová, K., et al.: Uncertainty quantification in CNN-based surface prediction using shape priors. In: Reuter, M., Wachinger, C., Lombaert, H., Paniagua, B., Lüthi, M., Egger, B. (eds.) ShapeMI 2018. LNCS, vol. 11167, pp. 300–310. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04747-4_28

    Chapter  Google Scholar 

  23. Xu, H., Elhabian, S.Y.: Image2SSM: Reimagining statistical shape models from images with radial basis functions. arXiv preprint arXiv:2305.11946 (2023)

  24. Xu, J., Li, M., Zhu, Z.: Automatic data augmentation for 3D medical image segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 378–387. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_37

    Chapter  Google Scholar 

  25. Yao, H., Wang, Y., Zhang, L., Zou, J.Y., Finn, C.: C-mixup: improving generalization in regression. Adv. Neural. Inf. Process. Syst. 35, 3361–3376 (2022)

    Google Scholar 

  26. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)

  27. Zhao, Z., Taylor, W.D., Styner, M., Steffens, D.C., Krishnan, K.R.R., MacFall, J.R.: Hippocampus shape analysis and late-life depression. PLoS ONE 3(3), e1837 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

We thank all research members of Dr.Elhabian’s lab and the ShapeWorks team for their assistance in discussions and suggestions that helped us improve this work. The National Institutes of Health supported this work under grant numbers NIBIB-U24EB029011, NIAMS-R01AR076120, and NIBIB-R01EB016701. The content is solely the authors’ responsibility and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mokshagna Sai Teja Karanam or Shireen Y. Elhabian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karanam, M.S.T., Kataria, T., Iyer, K., Elhabian, S.Y. (2023). ADASSM: Adversarial Data Augmentation in Statistical Shape Models from Images. In: Wachinger, C., Paniagua, B., Elhabian, S., Li, J., Egger, J. (eds) Shape in Medical Imaging. ShapeMI 2023. Lecture Notes in Computer Science, vol 14350. Springer, Cham. https://doi.org/10.1007/978-3-031-46914-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46914-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46913-8

  • Online ISBN: 978-3-031-46914-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics