Skip to main content

Implementation and Optimization of Narrow-Band Internet of Things (NB-IoT) Nodes Coverage Using Doppler Effect Shift Chips

  • Conference paper
  • First Online:
Advances on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC 2023)

Abstract

Rapid growth of smart and other Internet of Things (IoT) network devices in urban areas has brought an increase in the demand for bandwidth, as well as efficient and accurate IoT coverage systems. Traditional methods such as conventional sensors or sensors that use wide bandwidth, or WiFi as sensors have limitations in terms of coverage, accuracy, and scalability. In this paper, we propose a novel approach for IoT node coverage using Doppler enabled networks. Doppler enabled networks by leveraging the principles of Doppler shifting enable real-time, energy efficient communication coverage, and monitoring of information flow. By deploying a network of Doppler sensors in convenient and well placed location, we can capture and relay comprehensive data on reduced amounts of data bloat and relatively narrow bandwidth. The relayed Doppler data is processed more easily using advanced signal processing and machine learning techniques to extract valuable coverage information including area, information density, and congestion patterns. Our experimental evaluation demonstrates the effectiveness of a Doppler network in accurately rendering coverage and providing real-time insights for IoT coverage systems. The proposed approach has the potential to significantly enhance coverage capabilities, leading to more efficient systems, reduced congestion, and improved safety on the network. The simulation was built and made over Cooja on Contiki.

F. Mehmeti—Independent Researcher.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Popli, S., Jha, R.K., Jain, S.: A survey on energy efficient narrowband internet of things (nbiot): architecture, application and challenges. IEEE Access 7, 16739–16776 (2018)

    Article  Google Scholar 

  2. Xiao, L., Li, S., Qian, Y., Chen, D., Jiang, T.: An overview of OTFS for internet of things: concepts, benefits, and challenges. IEEE Internet Things J. 9(10), 7596–7618 (2021)

    Article  Google Scholar 

  3. Xu, T., Darwazeh, I.: Non-orthogonal narrowband internet of things: a design for saving bandwidth and doubling the number of connected devices. IEEE Internet Things J. 5(3), 2120–2129 (2018)

    Article  Google Scholar 

  4. Ratasuk, R., Vejlgaard, B., Mangalvedhe, N., Ghosh, A.: Nb-iot system for m2m communication. In: 2016 IEEE Wireless Communications and Networking Conference, pp. 1–5. IEEE (2016)

    Google Scholar 

  5. Feltrin, L., et al.: Narrowband IoT: a survey on downlink and uplink perspectives. IEEE Wirel. Commun. 26(1), 78–86 (2019)

    Article  MathSciNet  Google Scholar 

  6. Chen, M., Miao, Y., Hao, Y., Hwang, K.: Narrow band internet of things. IEEE Access 5, 20557–20577 (2017)

    Article  Google Scholar 

  7. Gong, X., Zhang, J., Cochran, D.: When target motion matters: doppler coverage in radar sensor networks. In: 2013 Proceedings IEEE INFOCOM, pp. 1169–1177. IEEE (2013)

    Google Scholar 

  8. Analytics, I.: State of the IoT 2018: number of IoT devices now at 7b–market accelerating, vol. 7, no. 8, p. 2020 (2018). https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/

  9. Babla, C.: LPWA connectivity for IoT. arm limited. Accessed June 2018

    Google Scholar 

  10. Rose, K., Eldridge, S., Chapin, L.: The internet of things: an overview. Internet Soc. (ISOC) 80, 1–50 (2015)

    Google Scholar 

  11. Weinstein, R.: RFID: a technical overview and its application to the enterprise. IT Prof. 7(3), 27–33 (2005)

    Article  Google Scholar 

  12. Costa, F., Genovesi, S., Borgese, M., Michel, A., Dicandia, F.A., Manara, G.: A review of RFID sensors, the new frontier of internet of things. Sensors 21(9), 3138 (2021)

    Article  Google Scholar 

  13. Martinez, B., Adelantado, F., Bartoli, A., Vilajosana, X.: Exploring the performance boundaries of NB-IOT. IEEE Internet Things J. 6(3), 5702–5712 (2019)

    Article  Google Scholar 

  14. Sinha, R.S., Wei, Y., Hwang, S.-H.: A survey on LPWA technology: lora and NB-IOT. ICT Exp. 3(1), 14–21 (2017)

    Article  Google Scholar 

  15. Burhan, M., Rehman, R.A., Khan, B., Kim, B.-S.: IoT elements, layered architectures and security issues: a comprehensive survey. Sensors 18(9), 2796 (2018)

    Article  Google Scholar 

  16. Navani, D., Jain, S., Nehra, M.S.: The internet of things (IoT): a study of architectural elements. In: 2017 13th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), pp. 473–478. IEEE (2017)

    Google Scholar 

  17. Akyildiz, I.F., Wang, X., Wang, W.: Wireless mesh networks: a survey. Comput. Netw. 47(4), 445–487 (2005)

    Article  MATH  Google Scholar 

  18. Ramachandran, K., Buddhikot, M., Chandranmenon, G., Miller, S., Belding-Royer, E., Almeroth, K.: On the design and implementation of infrastructure mesh networks. In: Proceedings of the IEEE Workshop on Wireless Mesh Networks (WiMesh), pp. 4–15. IEEE Press (2005)

    Google Scholar 

  19. Siddiqui, M.S.: Security issues in wireless mesh networks. In: 2007 International Conference on Multimedia and Ubiquitous Engineering (MUE 2007), pp. 717–722. IEEE (2007)

    Google Scholar 

  20. Doppler, C.: Ueber das farbige Licht der Doppelsterne und einiger anderer Gestirne des Himmels: Versuch einer das Bradley’sche Aberrations-Theorem als integrirenden Theil in sich schliessenden allgemeineren Theorie. K. Böhm Gesellschaft der Wissenschaften (1903)

    Google Scholar 

  21. Feynman, R.P., Leighton, R.B., Sands, M.: The feynman lectures on physics; vol. i. Am. J. Phys. 33(9), 750–752 (1965)

    Article  Google Scholar 

  22. Benhamida, F.Z., Bouabdellah, A., Challal, Y.: Using delay tolerant network for the internet of things: opportunities and challenges. In: 2017 8th International Conference on Information and Communication Systems (ICICS), pp. 252–257. IEEE (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald Elmazi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Elmazi, D., Mehmeti, F., Kulla, E. (2024). Implementation and Optimization of Narrow-Band Internet of Things (NB-IoT) Nodes Coverage Using Doppler Effect Shift Chips. In: Barolli, L. (eds) Advances on P2P, Parallel, Grid, Cloud and Internet Computing . 3PGCIC 2023. Lecture Notes on Data Engineering and Communications Technologies, vol 189. Springer, Cham. https://doi.org/10.1007/978-3-031-46970-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46970-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46969-5

  • Online ISBN: 978-3-031-46970-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics