Skip to main content

Evaluation of the Timber Internal Crack Using CNN

  • Conference paper
  • First Online:
Advances on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC 2023)

Abstract

When freshly harvested, cedar and cypress contain a high amount of moisture and must undergo a high-temperature drying process before we use them as building materials. However, a high-temperature drying process could cause internal cracks in the wood, and these defects reduce joint strength and buckling resistance. Therefore, human experts must visually evaluate the severity of cracks in the cross-section of timbers, which is highly labor-intensive and time-consuming. To address this issue, the authors have proposed to employ a convolutional neural network (CNN) to automatically evaluate the severity of cracks from cross-sectional images of timbers. Our previous study demonstrated that the proposed CNN could appropriately evaluate the crack severity. However, since the number of images was only 64, employing more images was required for further validation. Therefore, the authors added 140 images to validate the CNN in the present paper. This paper describes the experiment in detail and discusses the findings and future works in the conclusion part.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bergman, R.: Drying and control of moisture content and dimensional changes. In: Wood Handbook, Wood as an Engineering Material, Chapter 13, pp. 1–20. USDA, USA (2021)

    Google Scholar 

  2. Yamashita, K., Hirakawa, Y., Saito, S., Ikeda, M., Ohta, M.: Internal-check variation in boxed-heart square timber of sugi (Cryptomeria japonica) cultivars dried by high-temperature kiln drying. J. Wood Sci. 58, 375–382 (2012). https://doi.org/10.1007/s10086-012-1272-8

    Article  Google Scholar 

  3. Tomita, M.: Effects of internal checks caused by high-temperature drying on mechanical properties of sugi squared sawn timbers: bending strength of beam and resistance of bolted wood-joints. Wood Ind. 64, 416–422 (2009)

    Google Scholar 

  4. Tonosaki, M., Saito, S., Miyamoto, K.: Evaluation of internal checks in high temperature dried sugi boxed heart square sawn timber by dynamic shear modulus. Mokuzai Gakkaishi 56, 79–83 (2010). https://doi.org/10.2488/jwrs.56.79

    Article  Google Scholar 

  5. Teranishi, Y., Kaimoto, H., Matsumoto, H.: Steam-heated/radio-frequency hybrid drying for sugi boxed-heart timbers(1) effect of high temperature setting time on internal checks. Wood Ind. 72, 52–57 (2016)

    Google Scholar 

  6. Yin, Q., Liu, H.-H.: Drying stress and strain of wood: a review. Appl. Sci. 11, 5023 (2021). https://doi.org/10.3390/app11115023

    Article  Google Scholar 

  7. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998). https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  8. Yuan, Y., et al.: Crack length measurement using convolutional neural networks and image processing. Sensors 21, 5894 (2021). https://doi.org/10.3390/s21175894

    Article  Google Scholar 

  9. Hallee, M.J., Napolitano, R.K., Reinhart, W.F., Glisic, B.: Crack detection in images of masonry using CNNs. Sensors 21, 4929 (2021). https://doi.org/10.3390/s21144929

    Article  Google Scholar 

  10. Kato, S., et al.: Crack severity classification from timber cross-sectional images using convolutional neural network. Appl. Sci. 13, 1280 (2023). https://doi.org/10.3390/app13031280

  11. Nakayama, S.: Evaluation of internal checks on boxed-heart structural timber of Sugi and Hinoki using stress-wave propagation I. Effects of moisture content, timber temperature, knots, and the internal check form. J. For. Biomass Util. Soc. 7, 51–58 (2012)

    Google Scholar 

  12. Nakayama, S., Matsumoto, H., Teranishi, Y., Kato, H., Shibata, H., Shibata, N.: Evaluation of internal checks on boxed-heart structural timber of Sugi and Hinoki using stress-wave propagation II. Evaluating internal checks of full-sized timber. J. For. Biomass Util. Soc. 8, 21–27 (2013)

    Google Scholar 

  13. Nakayama, S., Matsumoto, H., Teranishi, Y., Kato, H., Shibata, H., Shibata, N.: Evaluation of internal checks on boxed-heart structural timber of Sugi and Hinoki using stress-wave propagation (III) estimation of the length of internal checks in boxed-heart square timber of sugi. J. For. Biomass Util. Soc. 8, 61–65 (2013)

    Google Scholar 

  14. Liu, Y., Hou, M., Li, A., Dong, Y., Xie, L., Ji, Y.: Automatic detection of timber-cracks in wooden architectural heritage using Yolov3 algorithm. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XLIII–B2, 1471–1476 (2020). https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-1471-2020

  15. He, T., Liu, Y., Yu, Y., Zhao, Q., Hu, Z.: Application of deep convolutional neural network on feature extraction and detection of wood defects. Measurement 152, 1–8 (2020). https://doi.org/10.1016/j.measurement.2019.107357

  16. Pan, L., Rogulin, R., Kondrashev, S.: Artificial neural network for defect detection in CT images of wood. Comput. Electron. Agric. 187, 1–7 (2021). https://doi.org/10.1016/j.compag.2021.106312

    Article  Google Scholar 

  17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778. Las Vegas, NV, USA (27–30 June 2016)

    Google Scholar 

  18. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 248–255. Miami, USA (June 2009). https://doi.org/10.1109/CVPR.2009.5206848

  19. Hamishebahar, Y., Guan, H., So, S., Jo, J.: A comprehensive review of deep learning-based crack detection approaches. Appl. Sci. 12, 1374 (2022). https://doi.org/10.3390/app12031374

    Article  Google Scholar 

  20. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. Int. Conf. Mach. Learn. (2015). https://arxiv.org/abs/1502.03167

  21. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4700–4708. Honolulu, HI, USA (21–26 July 2017)

    Google Scholar 

  23. Nair, V., Hinton, G.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814. Haifa, Israel (21–24 June 2010)

    Google Scholar 

  24. Alex, K., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Adv. Neural. Inf. Process. Syst. 25, 1097–1105 (2012)

    Google Scholar 

  25. Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv (2015)

    Google Scholar 

  26. Lin, M., Chen, Q., Yan, S.: Network in network, arXiv preprint arXiv:1312.4400 (2013)

  27. Szegedy, C., et al.: Going Deeper with Convolutions. arXiv (2014). https://doi.org/10.48550/arXiv.1409.4842

  28. Priddy, K.L., Keller, P.E.: Dealing with limited amounts of data. In: Artificial Neural Networks—An Introduction, Chapter 11, pp. 101–105. SPIE Press, Bellingham, WA, USA (2005)

    Google Scholar 

  29. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6, 60 (2019). https://doi.org/10.1186/s40537-019-0197-0

    Article  Google Scholar 

  30. Shin, H.-C., et al.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Transactions on Medical Imaging 35(5), 1285–1298 (May 2016). https://doi.org/10.1109/TMI.2016.2528162

  31. Bishop, C.M.: Pattern recognition and machine learning. Springer, New York, NY, USA (2006)

    Google Scholar 

  32. Rella Riccardi, M., Mauriello, F., Sarkar, S., Galante, F., Scarano, A., Montella, A.: Parametric and Non-parametric analyses for 388 pedestrian crash severity prediction in Great Britain. Sustainability 14, 3188 (2022). https://doi.org/10.3390/su14063188

    Article  Google Scholar 

  33. Zadeh, L.A.: Fuzzy sets. Inf. Control. 8, 338–353 (1965)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Kato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Toyosaki, R. et al. (2024). Evaluation of the Timber Internal Crack Using CNN. In: Barolli, L. (eds) Advances on P2P, Parallel, Grid, Cloud and Internet Computing . 3PGCIC 2023. Lecture Notes on Data Engineering and Communications Technologies, vol 189. Springer, Cham. https://doi.org/10.1007/978-3-031-46970-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46970-1_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46969-5

  • Online ISBN: 978-3-031-46970-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics