Skip to main content

Centroid Tuplet Loss for Person Re-Identification

  • Conference paper
  • First Online:
Advances on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC 2023)

Abstract

Person Re-Identification (Person Re-ID) is an important computer vision task in area surveillance, in which the goal is to match a person’s identity across different cameras or locations in videos or image sequences. To solve this task, Deep Metric Learning with the combination of different neural networks and metric losses such as Triplet Loss has become a common framework and achieved several remarkable results on benchmark datasets. However, Deep Metric Learning loss functions often depend on delicately sampling strategies for faster convergence and effective learning. These common sampling strategies usually rely on calculating embedding distances between samples in training datasets and selecting the most useful triplets or tuplets of images to consider, which makes these methods computationally expensive and may incur the risk of causing sample bias. Additionally, Triplet Loss also appears fragile to outliers and noisy labels. In this paper, we designed a centroid-based metric loss function, Centroid Tuplet Loss, which uses randomly selected mean centroid representations of classes in each mini-batch to achieve better retrieval performance. Experiments on two widely used Person Re-ID datasets, Market-1501 and CUHK03 dataset, demonstrates the effectiveness of our method over existing state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Herzog, F., Ji, X., Teepe, T., Hörmann, S., Gilg, J., Rigoll, G.: Lightweight multi-branch network for person re-identification. In: 2021 IEEE International Conference on Image Processing (ICIP), pp. 1129–1133. IEEE (2021)

    Google Scholar 

  2. Li, D., Chen, S., Zhong, Y., Liang, F., Ma, L.: DiP: learning discriminative implicit parts for person re-identification. arXiv preprint arXiv:2212.13906 (2022)

  3. Quispe, R., Pedrini, H.: Top-DB-Net: top dropblock for activation enhancement in person re-identification. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 2980–2987. IEEE (2021)

    Google Scholar 

  4. Luo, H., et al.: A strong baseline and batch normalization neck for deep person re-identification. IEEE Trans. Multimedia 22(10), 2597–2609 (2019)

    Article  Google Scholar 

  5. Wieczorek, M., Michalowski, A., Wroblewska, A., Dabrowski, J.: A strong baseline for fashion retrieval with person re-identification models. In: Yang, H., Pasupa, K., Leung, A.C.-S., Kwok, J.T., Chan, J.H., King, I. (eds.) ICONIP 2020. CCIS, vol. 1332, pp. 294–301. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63820-7_33

    Chapter  Google Scholar 

  6. Zhai, Y., Guo, X., Lu, Y., Li, H.: In defense of the classification loss for person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  7. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)

    Google Scholar 

  8. Hermans, A., Beyer, L., Leibe, B.: In defense of the triplet loss for person re-identification. arXiv preprintarXiv:1703.07737 (2017)

  9. Ge, W.: Deep metric learning with hierarchical triplet loss. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 269–285 (2018)

    Google Scholar 

  10. Cheng, D., Gong, Y., Zhou, S., Wang, J., Zheng, N.: Person re-identification by multi-channel parts-based CNN with improved triplet loss function. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1335–1344 (2016)

    Google Scholar 

  11. Yuan, Y., Chen, W., Yang, Y., Wang, Z.: In defense of the triplet loss again: learning robust person re-identification with fast approximated triplet loss and label distillation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 354–355 (2020)

    Google Scholar 

  12. Yu, R., Dou, Z., Bai, S., Zhang, Z., Xu, Y., Bai, X.: Hard-aware point-to-set deep metric for person re-identification. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 188–204 (2018)

    Google Scholar 

  13. Wieczorek, M., Rychalska, B., Dąbrowski, J.: On the unreasonable effectiveness of centroids in image retrieval. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds.) ICONIP 2021. LNCS, vol. 13111, pp. 212–223. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92273-3_18

    Chapter  Google Scholar 

  14. Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., Tian, Q.: Scalable person re-identification: a benchmark. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1116–1124 (2015)

    Google Scholar 

  15. Chen, W., Chen, X., Zhang, J., Huang, K.: Beyond triplet loss: a deep quadruplet network for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 403–412 (2017)

    Google Scholar 

  16. Yan, C., et al.: Beyond triplet loss: person re-identification with fine-grained difference-aware pairwise loss. IEEE Trans. Multimedia 24, 1665–1677 (2021)

    Article  Google Scholar 

  17. Movshovitz-Attias, Y., Toshev, A., Leung, T.K., Ioffe, S., Singh, S.: No fuss distance metric learning using proxies. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 360–368 (2017)

    Google Scholar 

  18. Oh Song, H., Xiang, Y., Jegelka, S., Savarese, S.: Deep metric learning via lifted structured feature embedding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4004–4012 (2016)

    Google Scholar 

  19. Sohn, K.: Improved deep metric learning with multi-class n-pair loss objective. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  20. Yu, B., Tao, D.: Deep metric learning with tuplet margin loss. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6490–6499 (2019)

    Google Scholar 

  21. Li, W., Zhao, R., Xiao, T., Wang, X.: DeepReID: deep filter pairing neural network for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 152–159 (2014)

    Google Scholar 

  22. Li, W., Wang, X.: Locally aligned feature transforms across views. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3594–3601 (2013)

    Google Scholar 

  23. Xiong, F., Gou, M., Camps, O., Sznaier, M.: Person re-identification using Kernel-based metric learning methods. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 1–16. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10584-0_1

    Chapter  Google Scholar 

  24. Koestinger, M., Hirzer, M., Wohlhart, P., Roth, P.M., Bischof, H.: Large scale metric learning from equivalence constraints. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2288–2295. IEEE (2012)

    Google Scholar 

  25. Leng, Q., Ye, M., Tian, Q.: A survey of open-world person re-identification. IEEE Trans. Circ. Syst. Video Technol. 30(4), 1092–1108 (2019)

    Article  Google Scholar 

  26. Sun, Y., Zheng, L., Yang, Y., Tian, Q., Wang, S.: Beyond part models: person retrieval with refined part pooling (and a strong convolutional baseline). In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 480–496 (2018)

    Google Scholar 

  27. Suh, Y., Wang, J., Tang, S., Mei, T., Lee, K.M.: Part-aligned bilinear representations for person re-identification. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 402–419 (2018)

    Google Scholar 

  28. Zheng, W.S., Gong, S., Xiang, T.: Person re-identification by probabilistic relative distance comparison. In: CVPR 2011, pp. 649–656. IEEE (2011)

    Google Scholar 

  29. Fan, X., Jiang, W., Luo, H., Fei, M.: SphereReID: deep hypersphere manifold embedding for person re-identification. J. Vis. Commun. Image Represent. 60, 51–58 (2019)

    Article  Google Scholar 

  30. Luo, C., Chen, Y., Wang, N., Zhang, Z.: Spectral feature transformation for person re-identification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4976–4985 (2019)

    Google Scholar 

  31. Hoffer, E., Ailon, N.: Deep metric learning using triplet network. In: Feragen, A., Pelillo, M., Loog, M. (eds.) SIMBAD 2015. LNCS, vol. 9370, pp. 84–92. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24261-3_7

    Chapter  Google Scholar 

  32. Ranjan, R., Castillo, C.D., Chellappa, R.: L2-constrained softmax loss for discriminative face verification. arXiv preprint arXiv:1703.09507 (2017)

  33. Wen, Y., Zhang, K., Li, Z., Qiao, Yu.: A discriminative feature learning approach for deep face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 499–515. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_31

    Chapter  Google Scholar 

  34. Zheng, F., et al.: Pyramidal person re-identification via multi-loss dynamic training. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8514–8522 (2019)

    Google Scholar 

  35. Zhang, S., Yin, Z., Wu, X., Wang, K., Zhou, Q., Kang, B.: FPB: feature pyramid branch for person re-identification. arXiv preprint arXiv:2108.01901 (2021)

  36. Chen, W., et al.: Beyond appearance: a semantic controllable self-supervised learning framework for human-centric visual tasks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15050–15061 (2023)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the NEC C &C Foundation Grants for Researchers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duc Viet Bui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bui, D.V., Kubo, M., Sato, H. (2024). Centroid Tuplet Loss for Person Re-Identification. In: Barolli, L. (eds) Advances on P2P, Parallel, Grid, Cloud and Internet Computing . 3PGCIC 2023. Lecture Notes on Data Engineering and Communications Technologies, vol 189. Springer, Cham. https://doi.org/10.1007/978-3-031-46970-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46970-1_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46969-5

  • Online ISBN: 978-3-031-46970-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics