Skip to main content

Blockchain and IoT Integration for Air Pollution Control

  • Conference paper
  • First Online:
Advances on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC 2023)

Abstract

Blockchain is a disruptive technology that enables untrusted parties to securely store and process data without the need of a centralised trusted party. In the context of data storage, blockchains offer a distributed database architecture that ensures data redundancy, fault tolerance and resistance to unauthorised alterations. The inherent immutability of blockchain technology guarantees the integrity of stored data, making them particularly suitable for applications where tamper-proof records are essential. These properties make blockchain the most natural infrastructure to build truly decentralised and secure IoT systems where IoT data can be shared and processed securely across untrusted entities without the need of a centralised trusted party. IoT and blockchain integration suffers of well known scalability issues. IoT systems can produce a high amount of data which can cause poor blockchain throughput and high fees. This paper presents an IoT application in the context of Industry 4.0 sustainability. In particular, a private blockchain is used in order to design and implement a system for air pollution control. Novel on-chain smart contracts for data storage and their aggregations are proposed. The approach has been implemented and evaluated in terms of its strengths, weaknesses and limitations with respect to the currently existing blockchain technologies.

This research was funded by Ministero dell’Università e della Ricerca (MUR), issue D.M. 351/2022 “Borse di Dottorato” - Dottorato di Ricerca di Interesse Nazionale in “Blockchain & Distributed Ledger Technology”, under the National Recovery and Resilience Plan (NRRP), and by the Italian National Group for Scientific Computation GNCS-INdAM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cacciagrano, D., Corradini, F., Mazzante, G., Mostarda, L., Sestili, D.: Off-chain execution of IoT smart contracts. In: Barolli, L., Woungang, I., Enokido, T. (eds.) AINA 2021. LNNS, vol. 226, pp. 608–619. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75075-6_50

    Chapter  Google Scholar 

  2. Tanwar, S.: Blockchain Technology. From Theory to Practice. Springer, Singapore (2022). https://doi.org/10.1007/978-981-19-1488-1. ISBN 978-981-19-1490-4

  3. Poon, J., Buterin, V.: Plasma: scalable autonomous smart contracts. White Paper, pp. 1-47 (2017)

    Google Scholar 

  4. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2009). https://bitcoin.org/bitcoin.pdf

  5. Zou, W., Lo, D., Kochhar, P.S., et al.: Smart contract development: challenges and opportunities. IEEE Trans. Softw. Eng. 47(10), 2084–2106 (2021). https://doi.org/10.1109/TSE.2019.2942301

    Article  Google Scholar 

  6. Wood, G., et al.: Ethereum: a secure decentralised generalised transaction ledger (2022). https://ethereum.github.io/yellowpaper/paper.pdf

  7. Bistarelli, S., Marcozzi, M., Mazzante, G., Mostarda, L., Navarra, A., Sestili, D.: Blockchain and IoT integration for pollutant emission control. In: Barolli, L., Hussain, F., Enokido, T. (eds.) AINA 2022. LNNS, vol. 451, pp. 255–264. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99619-2_25

    Chapter  Google Scholar 

  8. Capocasale, V., Gotta, D., Perboli, G.: Comparative analysis of permissioned blockchain frameworks for industrial applications. Blockchain: Res. Appl. 4(1) (2023). https://doi.org/10.1016/j.bcra.2022.100113

  9. Hyperledger Foundation (2022) Hyperledger Besu. https://besu.hyperledger.org/

  10. Zheng, G., Gao, L., Huang, L., Guan, J.: Ethereum Smart Contract Development in Solidity. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-6218-1. ISBN 978-981-15-6217-4

  11. Breidenbach, L., Cachin, C., Chan, B., et al.: ChainLink 2.0: next steps in the evolution of decentralized oracle networks (2021). https://research.chain.link/whitepaper-v2.pdf

  12. Manoj Athreya, A., et al.: Peer-to-peer distributed storage using InterPlanetary file system. In: Chiplunkar, N.N., Fukao, T. (eds.) Advances in Artificial Intelligence and Data Engineering. AISC, vol. 1133, pp. 711–721. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-3514-7_54. ISBN 978-981-15-3514-7

  13. Shamdasani, J., Wadile, N., Deshmukh, S., Sayyed, M.: Decentralized file storage (interplanetary file system) using blockchain. Int. J. Eng. Res. Technol. (IJERT) 12(3) (2023). ISSN 2278-0181

    Google Scholar 

  14. Apache Software Foundation: Hadoop Distribted File System (2022). https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html#Introduction

  15. Mothukuri, V., Cheerla, S.S., Parizi, R.M., et al.: BlockHDFS: blockchain-integrated hadoop distributed file system for secure provenance traceability. Blockchain: Res. Appl. 2(4) (2021). https://doi.org/10.1016/j.bcra.2021.100032

  16. Xu, C., Xu, J., Zhang, C., Pei, J.: SlimChain: scaling blockchain transactions through off-chain storage and parallel processing. VLDB Endow. 14(11), 2314–2326 (2021). https://doi.org/10.14778/3476249.3476283

    Article  Google Scholar 

  17. Lee, A.W.L., Toyoda, K., Yeow, I., et al.: Blockchain-enabled carbon emission management system in a multi-tier supply chain. Procedia CIRP 116, 233–238 (2023). https://doi.org/10.1016/j.procir.2023.02.040

    Article  Google Scholar 

  18. Han, Y., Park, B., Jeong, J.: A novel architecture of air pollution measurement platform using 5G and blockchain for industrial IoT applications. Procedia Comput. Sci. 155, 728–733 (2019). https://doi.org/10.1016/j.procs.2019.08.105

    Article  Google Scholar 

  19. Brinkmann, T., Both, R., Scalet, B.M., et al.: JRC reference report on monitoring of emissions to air and water from IED installations - industrial emissions directive 2010/75/EU (Integrated Pollution Prevention and Control) (2018). https://eippcb.jrc.ec.europa.eu/reference/monitoring-emissions-air-and-water-ied-installations-0

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Bigiotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bigiotti, A., Mostarda, L., Navarra, A. (2024). Blockchain and IoT Integration for Air Pollution Control. In: Barolli, L. (eds) Advances on P2P, Parallel, Grid, Cloud and Internet Computing . 3PGCIC 2023. Lecture Notes on Data Engineering and Communications Technologies, vol 189. Springer, Cham. https://doi.org/10.1007/978-3-031-46970-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46970-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46969-5

  • Online ISBN: 978-3-031-46970-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics