Skip to main content

Design and Implementation of a Fuzzy-Based System and a Testbed for Selection of Radio Access Technologies in 5G Wireless Networks

  • Conference paper
  • First Online:
Advances on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC 2023)

Abstract

The transition to the 5th Generation (5G) mobile networks will rely on Ultra-Dense Heterogeneous Networks (UDHetNets). These networks introduce dense packed network configurations along with a diverse range of networks catering to user devices. The crucial challenge lies in establishing efficiently connections with an appropriate Radio Access Technology (RAT). This selection process involves the consideration of numerous parameters, which makes the problem NP-Hard. To address this challenge, in this research work, we design and implement a Fuzzy-based system and a testbed for RAT selection in 5G wireless networks. For the implementation, we consider three parameters: Coverage (CV), User Priority (UP), and Spectral Efficiency (SE). The output parameter is Radio Access Technology Decision Value (RDV).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Navarro-Ortiz, J., Romero-Diaz, P., Sendra, S., Ameigeiras, P., Ramos-Munoz, J.J., Lopez-Soler, J.M.: A survey on 5G usage scenarios and traffic models. IEEE Commun. Surv. Tutor. 22(2), 905–929 (2020). https://doi.org/10.1109/COMST.2020.2971781

    Article  Google Scholar 

  2. Manjeshwar, A.N., Jha, P., Karandikar, A., Chaporkar, P.: Enhanced UE slice mobility for 5G multi-rat networks. In: 2019 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN), pp. 1–6 (2019). https://doi.org/10.1109/NFV-SDN47374.2019.9039982

  3. Akpakwu, G.A., Silva, B.J., Hancke, G.P., Abu-Mahfouz, A.M.: A survey on 5G networks for the internet of things: communication technologies and challenges. IEEE Access 6, 3619–3647 (2018)

    Article  Google Scholar 

  4. Palmieri, F.: A reliability and latency-aware routing framework for 5G transport infrastructures. Comput. Netw. 179(9), Article 107365 (2020). https://doi.org/10.1016/j.comnet.2020.107365

  5. Kamil, I.A., Ogundoyin, S.O.: Lightweight privacy-preserving power injection and communication over vehicular networks and 5G smart grid slice with provable security. Internet Things 8(100116), 100–116 (2019). https://doi.org/10.1016/j.iot.2019.100116

    Article  Google Scholar 

  6. Pham, Q.V., et al.: A survey of multi-access edge computing in 5g and beyond: fundamentals, technology integration, and state-of-the-art. IEEE Access 8, 116,974–117,017 (2020). https://doi.org/10.1109/ACCESS.2020.3001277

  7. Orsino, A., Araniti, G., Molinaro, A., Iera, A.: Effective rat selection approach for 5G dense wireless networks. In: 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), pp. 1–5 (2015). https://doi.org/10.1109/VTCSpring.2015.7145798

  8. Yao, D., Su, X., Liu, B., Zeng, J.: A mobile handover mechanism based on fuzzy logic and MPTCP protocol under SDN architecture*. In: 18th International Symposium on Communications and Information Technologies (ISCIT-2018), pp. 141–146 (2018). https://doi.org/10.1109/ISCIT.2018.8587956

  9. Lee, J., Yoo, Y.: Handover cell selection using user mobility information in a 5G SDN-based network. In: 2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN-2017), pp. 697–702 (2017). https://doi.org/10.1109/ICUFN.2017.7993880

  10. Moravejosharieh, A., Ahmadi, K., Ahmad, S.: A fuzzy logic approach to increase quality of service in software defined networking. In: 2018 International Conference on Advances in Computing,Communication Control and Networking (ICACCCN-2018), pp. 68–73 (2018). https://doi.org/10.1109/ICACCCN.2018.8748678

  11. Hossain, E., Hasan, M.: 5G cellular: key enabling technologies and research challenges. IEEE Instrum. Meas. Mag. 18(3), 11–21 (2015). https://doi.org/10.1109/MIM.2015.7108393

    Article  Google Scholar 

  12. Vagionas, C., et al.: End-to-end real-time service provisioning over a SDN-controllable analog mmWave fiber-wireless 5G X-haul network. J. Lightwave Technol. 1–10 (2023). https://doi.org/10.1109/JLT.2023.3234365

  13. Li, L.E., Mao, Z.M., Rexford, J.: Toward software-defined cellular networks. In: 2012 European Workshop on Software Defined Networking, pp. 7–12 (2012). https://doi.org/10.1109/EWSDN.2012.28

  14. Mousa, M., Bahaa-Eldin, A.M., Sobh, M.: Software defined networking concepts and challenges. In: 2016 11th International Conference on Computer Engineering & Systems (ICCES-2016), pp. 79–90. IEEE (2016)

    Google Scholar 

  15. An, N., Kim, Y., Park, J., Kwon, D.H., Lim, H.: Slice management for quality of service differentiation in wireless network slicing. Sensors 19, 2745 (2019). https://doi.org/10.3390/s19122745

    Article  Google Scholar 

  16. Jiang, M., Condoluci, M., Mahmoodi, T.: Network slicing management & prioritization in 5G mobile systems. In: European Wireless 2016; 22th European Wireless Conference, pp. 1–6. VDE (2016)

    Google Scholar 

  17. Chen, J., et al.: Realizing dynamic network slice resource management based on SDN networks. In: 2019 International Conference on Intelligent Computing and its Emerging Applications (ICEA), pp. 120–125 (2019)

    Google Scholar 

  18. Li, X., et al.: Network slicing for 5G: challenges and opportunities. IEEE Internet Comput. 21(5), 20–27 (2017)

    Article  Google Scholar 

  19. Afolabi, I., Taleb, T., Samdanis, K., Ksentini, A., Flinck, H.: Network slicing and softwarization: a survey on principles, enabling technologies, and solutions. IEEE Commun. Surv. Tutor. 20(3), 2429–2453 (2018). https://doi.org/10.1109/COMST.2018.2815638

    Article  Google Scholar 

  20. Alliance, N.: Description of network slicing concept. NGMN 5G P 1(1), 7 (2016). https://ngmn.org/wp-content/uploads/160113_NGMN_Network_Slicing_v1_0.pdf

  21. Norp, T.: 5G requirements and key performance indicators. J. ICT Standard. 6(1), 15–30 (2018)

    Article  Google Scholar 

  22. Parvez, I., Rahmati, A., Guvenc, I., Sarwat, A.I., Dai, H.: A survey on low latency towards 5G: ran, core network and caching solutions. IEEE Commun. Surv. Tutor. 20(4), 3098–3130 (2018)

    Article  Google Scholar 

  23. Kim, Y., Park, J., Kwon, D., Lim, H.: Buffer management of virtualized network slices for quality-of-service satisfaction. In: 2018 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN-2018), pp. 1–4 (2018)

    Google Scholar 

  24. Barolli, L., Koyama, A., Yamada, T., Yokoyama, S.: An integrated CAC and routing strategy for high-speed large-scale networks using cooperative agents. IPSJ J. 42(2), 222–233 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phudit Ampririt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ampririt, P., Higashi, S., Qafzezi, E., Ikeda, M., Matsuo, K., Barolli, L. (2024). Design and Implementation of a Fuzzy-Based System and a Testbed for Selection of Radio Access Technologies in 5G Wireless Networks. In: Barolli, L. (eds) Advances on P2P, Parallel, Grid, Cloud and Internet Computing . 3PGCIC 2023. Lecture Notes on Data Engineering and Communications Technologies, vol 189. Springer, Cham. https://doi.org/10.1007/978-3-031-46970-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46970-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46969-5

  • Online ISBN: 978-3-031-46970-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics