Skip to main content

Understanding Group Dynamics During Synchronous Collaborative Problem-Solving Activities: An Epistemic Network Approach

  • Conference paper
  • First Online:
Advances in Quantitative Ethnography (ICQE 2023)

Abstract

Collaborative problem-solving (CPS) is important in today’s fast-paced and interconnected world. However, assessing and supporting CPS skills and actions in online and co-located collaborative settings is challenging for researchers and teachers. To identify individual and group CPS behavioral patterns, this study employs epistemic network analysis (ENA) in analyzing, modeling, and visualizing the collaborative discourse patterns of legal students working on an ill-structured problem in a semester-long course. The results showed that individual students’ CPS strategies differed across the two meetings, and demonstrated varying standards for cognitive and metacognitive regulation processes. We provide implications for researchers and teachers working in CPS environments and underscore the need for multimodal datasets to understand students’ CPS strategies clearly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. OECD: What is collaborative problem-solving? In: PISA 2015 (vol. V): Collaborative Problem Solving. OECD, Paris (2017)

    Google Scholar 

  2. Haste, H.: Ambiguity, autonomy and agency: Psychological challenges to new competence. In: Defining and Selecting Key Competencies, pp. 93–120. Hogrefe & Huber (2001)

    Google Scholar 

  3. Littleton, K., Miell, D., Faulkner, D.: Learning to Collaborate, Collaborating to Learn: Understanding and Promoting Educationally Productive Collaborative Work. Nova Science Publishers Inc. (2004)

    Google Scholar 

  4. Cukurova, M., Luckin, R., Millán, E., Mavrikis, M.: The NISPI framework: analysing collaborative problem-solving from students’ physical interactions. Comput. Educ. 116, 93–109 (2018)

    Article  Google Scholar 

  5. Pardo, A., Poquet, O., Martínez-Maldonado, R., Dawson, S.: Provision of data-driven student feedback in LA & EDM. In: Lang, C., Siemens, G., Wise, A., Gasevic, D (eds.) Handbook of Learning Analytics. Society for Learning Analytics Research (SoLAR), pp. 163–174 (2017)

    Google Scholar 

  6. Swiecki, Z., Ruis, A.R., Farrell, C., Shaffer, D.W.: Assessing individual contributions to collaborative problem solving: a network analysis approach. Comput. Hum. Behav. 104, 105876 (2020)

    Article  Google Scholar 

  7. Kyllonen, P.C., Zhu, M., von Davier, A.A.: Introduction: innovative assessment of collaboration. In: von Davier, A.A., Zhu, M., Kyllonen, P.C. (eds.) Innovative Assessment of Collaboration, pp. 1–18. Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-33261-1_1

    Chapter  Google Scholar 

  8. Echeverria, V., Martinez-Maldonado, R., Buckingham Shum, S.: Towards collaboration translucence: Giving meaning to multimodal group data. Paper presented at the Proceedings of the 2019 CHI Conference on Human Factors in Computing System (2019)

    Google Scholar 

  9. Stahl, G., Hakkarainen, K.: Theories of CSCL. In: Cress, Ul., Rosé, C., Wise, A.F., Oshima, J. (eds.) International handbook of computer-supported collaborative learning. CCLS, vol. 19, pp. 23–43. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-65291-3_2

    Chapter  Google Scholar 

  10. Tan, Y., Ruis, A. R., Marquart, C., Cai, Z., Knowles, M.A., Shaffer, D.W.: Ordered network analysis. In: Advances in Quantitative Ethnography: 4th International Conference, ICQE 2022, Copenhagen, Denmark, 15–19 Oct 2022, Proceedings, pp. 101–116. Springer Nature Switzerland, Cham (2023)

    Google Scholar 

  11. Wang, Y., Ruis, A.R., Shaffer, D.W.: Modeling Collaborative Discourse with ENA Using a Probabilistic Function. In: Advances in Quantitative Ethnography: 4th International Conference, ICQE 2022, Copenhagen, Denmark, 15–19 Oct 2022, Proceedings, pp. 132–145. Springer Nature Switzerland.- check paper, Cham (2023)

    Google Scholar 

  12. Zimmerman, B.J., Martinez-Pons, M.: Student differences in self-regulated learning: relating grade, sex, and giftedness to self-efficacy and strategy use. J. Educ. Psychol. 82(1), 51 (1990)

    Article  Google Scholar 

  13. Roschelle, J., Teasley, S.D.: The construction of shared knowledge in collaborative problem solving. In: O’Malley, C. (ed.) Computer Supported Collaborative Learning, pp. 69–97. Springer Berlin Heidelberg, Berlin, Heidelberg (1995). https://doi.org/10.1007/978-3-642-85098-1_5

    Chapter  Google Scholar 

  14. Malmberg, J., Järvelä, S., Järvenoja, H.: Capturing temporal and sequential patterns of self-, co-, and socially shared regulation in the context of collaborative learning. Contemp. Educ. Psychol. 49, 160–174 (2017)

    Article  Google Scholar 

  15. Zimmerman, B.J.: Self-regulated learning and academic achievement: an overview. Educ. Psychol. 25(1), 3–17 (1990)

    Article  Google Scholar 

  16. Jivet, I., Wong, J., Scheffel, M., Valle Torre, M., Specht, M., Drachsler, H.: Quantum of Choice: how learners’ feedback monitoring decisions, goals and self-regulated learning skills are related. In: LAK21: 11th International Learning Analytics and Knowledge Conference, pp. 416–427 (2021)

    Google Scholar 

  17. Zimmerman, B.J., Schunk, D.H.: Handbook of Self-Regulation of Learning and Performance. Routledge/Taylor & Francis Group (2011)

    Google Scholar 

  18. Siebert-Evenstone, A.L., Irgens, G.A., Collier, W., Swiecki, Z., Ruis, A.R., Shaffer, D.W.: In search of conversational grain size: Modeling semantic structure using moving stanza windows. J. Learn. Anal. 4(3), 123–139 (2017)

    Google Scholar 

  19. Shaffer, D.W., Collier, W., Ruis, A.R.: A tutorial on epistemic network analysis: analyzing the structure of connections in cognitive, social, and interaction data. J. Learn. Anal. 3(3), 9–45 (2016)

    Article  Google Scholar 

  20. Johansen, S.H.: A contrastive approach to the types of hedging strategies used in Norwegian and English informal spoken conversations. Contrastive Pragmatics 2(1), 81–105 (2020)

    Article  Google Scholar 

  21. Winne, P.H.: Self-regulated learning: In: International Encyclopedia of the Social & Behavioral Sciences, pp. 535–540. Elsevier (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rogers Kaliisa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kaliisa, R., Dane, J.O., Sanchez, D., Pratt, J., Damsa, C., Scianna, J. (2023). Understanding Group Dynamics During Synchronous Collaborative Problem-Solving Activities: An Epistemic Network Approach. In: Arastoopour Irgens, G., Knight, S. (eds) Advances in Quantitative Ethnography. ICQE 2023. Communications in Computer and Information Science, vol 1895. Springer, Cham. https://doi.org/10.1007/978-3-031-47014-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47014-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47013-4

  • Online ISBN: 978-3-031-47014-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics