Skip to main content

Single-Cell Spatial Analysis of Histopathology Images for Survival Prediction via Graph Attention Network

  • Conference paper
  • First Online:
Applications of Medical Artificial Intelligence (AMAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14313))

Included in the following conference series:

  • 304 Accesses

Abstract

The tumor microenvironment is a complex ecosystem consisting of various immune and stromal cells in addition to neoplastic cells. The spatial interaction and organization of these cells play a critical role in tumor progression. Single-cell analysis of histopathology images offers an intrinsic advantage over traditional patch-based approach by providing fine-grained cellular information. However, existing studies do not perform explicit cell classification, and therefore still suffer from limited interpretability and lack biological relevance, which may negatively affect the performance for clinical outcome prediction. To address these challenges, we propose a cell-level contextual learning approach to explicitly capture the major cell types and their spatial interaction in the tumor microenvironment. To do this, we first segmented and classified each cell into tumor cells, lymphocytes, fibroblasts, macrophages, neutrophils, and other nonmalignant cells on histopathology images. Given this single-cell map, we constructed a graph and trained a graph attention network to learn the cell-level contextual features for survival prediction. Extensive experiments demonstrate that our model consistently outperform existing patch-based and cell graph-based approaches in two independent datasets. Further, we used the feature attribution method to discover distinct spatial patterns that are associated with prognosis, leading to biologically meaningful and interpretable results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, Z., et al.: Development and validation of a machine learning model for detection and classification of tertiary lymphoid structures in gastrointestinal cancers. JAMA Netw. Open 6, e2252553–e2252553 (2023)

    Article  Google Scholar 

  2. Javed, S., et al.: Cellular community detection for tissue phenotyping in colorectal cancer histology images. Med. Image Anal. 63, 101696 (2020)

    Article  Google Scholar 

  3. Chang, J.-R., Lee, C.-Y., Chen, C.-C., Reischl, J., Qaiser, T., Yeh, C.-Y.: Hybrid aggregation network for survival analysis from whole slide histopathological images. In: de Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert, C. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 731–740. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_70

    Chapter  Google Scholar 

  4. Agarwal, S., Eltigani Osman Abaker, M., Daescu, O.: Survival prediction based on histopathology imaging and clinical data: A novel, whole slide cnn approach. In: de Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert, C. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 762–771. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_73

    Chapter  Google Scholar 

  5. Braman, N., Gordon, J.W.H., Goossens, E.T., Willis, C., Stumpe, M.C., Venkataraman, J.: Deep orthogonal fusion: multimodal prognostic biomarker discovery integrating radiology, pathology, genomic, and clinical data. In: de Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert, C. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 667–677. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_64

    Chapter  Google Scholar 

  6. Li, H., et al.: DT-MIL: Deformable Transformer for Multi-instance Learning on Histopathological Image. In: de Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert, C. (eds.) MICCAI 2021. LNCS, vol. 12908, pp. 206–216. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_20

    Chapter  Google Scholar 

  7. Chen, R.J., et al.: Pan-cancer integrative histology-genomic analysis via multimodal deep learning. Cancer Cell 40, 865–878. e866 (2022)

    Google Scholar 

  8. Bag, S., et al.: Computational analysis of p63+ nuclei distribution pattern by graph theoretic approach in an oral pre-cancer (sub-mucous fibrosis). J. Pathol. Inform. 4, 35 (2013)

    Article  Google Scholar 

  9. Chen, R.J., et al.: Whole slide images are 2d point clouds: Context-aware survival prediction using patch-based graph convolutional networks. In: de Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert, C. (eds.) MICCAI 2021. LNCS, vol. 12908, pp. 339–349. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_33

    Chapter  Google Scholar 

  10. Pati, P., et al.: Hact-net: A hierarchical cell-to-tissue graph neural network for histopathological image classification. In: Sudre, C.H., Fehri, H., Arbel, T., Baumgartner, C.F., Dalca, A., Tanno, R., Van Leemput, K., Wells, W.M., Sotiras, A., Papiez, B., Ferrante, E., Parisot, S. (eds.) UNSURE/GRAIL -2020. LNCS, vol. 12443, pp. 208–219. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60365-6_20

    Chapter  Google Scholar 

  11. Zhou, Y., et al.: CGC-Net: cell graph convolutional network for grading of colorectal cancer histology images. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (2019)

    Google Scholar 

  12. Chen, R.J., et al.: Pathomic fusion: an integrated framework for fusing histopathology and genomic features for cancer diagnosis and prognosis. IEEE Trans. Med. Imaging (2020)

    Google Scholar 

  13. Kang, B., et al.: Prognostic value of tumor-infiltrating lymphocytes in Epstein-Barr virus-associated gastric cancer. Ann. Oncol. 27, 494–501 (2016)

    Article  Google Scholar 

  14. Jiang, Y., et al.: Predicting peritoneal recurrence and disease-free survival from CT images in gastric cancer with multitask deep learning: a retrospective study. The Lancet Digit. Health 4, e340–e350 (2022)

    Article  Google Scholar 

  15. Stringer, C., Wang, T., Michaelos, M., Pachitariu, M.: Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods 18, 100–106 (2021)

    Article  Google Scholar 

  16. Graham, S., et al.: Hover-net: Simultaneous segmentation and classification of nuclei in multi-tissue histology images. Med. Image Anal. 58, 101563 (2019)

    Article  Google Scholar 

  17. Greenwald, N.F., et al.: Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning. Nat. Biotechnol. 40, 555–565 (2022)

    Article  Google Scholar 

  18. Gamper, J., et al.: Pannuke dataset extension, insights and baselines. arXiv preprint arXiv:2003.10778 (2020)

  19. Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with automatic algorithm configuration. In: VISAPP 2009 - Proceedings of the Fourth International Conference on Computer Vision Theory and Applications (1) 2, 2 (2009)

    Google Scholar 

  20. Lee, Y., et al.: Derivation of prognostic contextual histopathological features from whole-slide images of tumours via graph deep learning. Nat. Biomed. Eng., 1–15 (2022)

    Google Scholar 

  21. Lin, D.Y., Wei, L.-J., Ying, Z.: Checking the Cox model with cumulative sums of martingale-based residuals. Biometrika 80, 557–572 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu, J., et al.: An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell 173, 400–416. e411 (2018)

    Google Scholar 

  23. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  24. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  25. Gao, Z., et al.: Instance-based vision transformer for subtyping of papillary renal cell carcinoma in histopathological image. In: de Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert, C. (eds.) MICCAI 2021. LNCS, vol. 12908, pp. 299–308. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_29

    Chapter  Google Scholar 

  26. Hou, W., Huang, H., Peng, Q., Yu, R., Yu, L., Wang, L.: Spatial-hierarchical graph neural network with dynamic structure learning for histological image classification. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2022: 25th International Conference, Singapore, September 18–22, 2022, Proceedings, Part II, pp. 181–191. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16434-7_18

Download references

Acknowledgements

This work was supported in part by the National Key R&D Program of China under Grant 2022YFC2009903 / 2022YFC2009900, in part by the National Natural Science Foundation of China under Grants 62171377, in part by the Ningbo Clinical Research Center for Medical Imaging under Grant 2021L003 (Open Project 2022LYKFZD06), and in part by the Natural Science Foundation of Ningbo City, China, under Grant 2021J052.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Xia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Z., Jiang, Y., Liu, L., Xia, Y., Li, R. (2024). Single-Cell Spatial Analysis of Histopathology Images for Survival Prediction via Graph Attention Network. In: Wu, S., Shabestari, B., Xing, L. (eds) Applications of Medical Artificial Intelligence. AMAI 2023. Lecture Notes in Computer Science, vol 14313. Springer, Cham. https://doi.org/10.1007/978-3-031-47076-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47076-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47075-2

  • Online ISBN: 978-3-031-47076-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics