Skip to main content

More Than Meets the Eye: Physicians’ Visual Attention in the Operating Room

  • Conference paper
  • First Online:
Applications of Medical Artificial Intelligence (AMAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14313))

Included in the following conference series:

  • 445 Accesses

Abstract

During surgery, the patient’s vital signs and the field of endoscopic view are displayed on multiple screens. As a result, both surgeons’ and anesthesiologists’ visual attention (VA) is crucial. Moreover, the distribution of said VA and the acquisition of specific cues might directly impact patient outcomes.

Recent research utilizes portable, head-mounted eye-tracking devices to gather precise and comprehensive information. Nevertheless, these technologies are not feasible for enduring data acquisition in an operating room (OR) environment. This is particularly the case during medical emergencies.

This study presents an alternative methodology: a webcam-based gaze target prediction model. Such an approach may provide continuous visual behavioral data with minimal interference to the physicians’ workflow in the OR. The proposed end-to-end framework is suitable for both standard and emergency surgeries.

In the future, such a platform may serve as a crucial component of context-aware assistive technologies in the OR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chetwood, A.S.A., et al.: Collaborative eye tracking: a potential training tool in laparoscopic surgery. Surgical Endoscopy 26(7), 2003–9 (2012). https://doi.org/10.1007/s00464-011-2143-x. http://www.ncbi.nlm.nih.gov/pubmed/22258302

  2. Chong, E., Wang, Y., Ruiz, N., Rehg, J.M.: Detecting attended visual targets in video. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 5395–5405 (2020). https://doi.org/10.1109/CVPR42600.2020.00544. https://github.com/ejcgt/attention-target-detection

  3. Deng, J., Guo, J., Ververas, E., Kotsia, I., Zafeiriou, S.: Retinaface: single-shot multi-level face localisation in the wild. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 5202–5211 (2020). https://doi.org/10.1109/CVPR42600.2020.00525

  4. Fang, Y., et al.: Dual attention guided gaze target detection in the wild. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 11385–11394 (2021). https://doi.org/10.1109/CVPR46437.2021.01123

  5. Feng, Z.H., Kittler, J., Awais, M., Huber, P., Wu, X.J.: Wing loss for robust facial landmark localisation with convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2235–2245 (2018)

    Google Scholar 

  6. Gil, A.M., Birdi, S., Kishibe, T., Grantcharov, T.P.: Eye tracking use in surgical research: a systematic review. J. Surg. Res. 279, 774–787 (2022). https://doi.org/10.1016/j.jss.2022.05.024. https://linkinghub.elsevier.com/retrieve/pii/S0022480422003419

  7. King, D.E.: Dlib-ml: a machine learning toolkit. J. Mach. Learn. Res. 10, 1755–1758 (2009)

    Google Scholar 

  8. Qi, D., Tan, W., Yao, Q., Liu, J.: YOLO5Face: Why Reinventing a Face Detector (2021). https://www.github.com/deepcam-cn/yolov5-face. http://arxiv.org/abs/2105.12931

  9. Ramasinghe, S., Athuraliya, C.D., Khan, S.H.: A context-aware capsule network for multi-label classification. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11131, pp. 546–554. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11015-4_40

    Chapter  Google Scholar 

  10. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2016-Decem, pp. 779–788 (2016). https://doi.org/10.1109/CVPR.2016.91. http://pjreddie.com/yolo/

  11. Roche, T.R., et al.: Anesthesia personnel’s visual attention regarding patient monitoring in simulated non-critical and critical situations, an eye-tracking study. BMC Anesthesiology 22(1) (2022). https://doi.org/10.1186/s12871-022-01705-6. https://doi.org/10.1186/s12871-022-01705-6

  12. Schulz, C.M., et al.: Visual attention of anaesthetists during simulated critical incidents. British J. Anaesthesia 106(6), 807–813 (2011). https://doi.org/10.1093/bja/aer087. www.anvil-software.de

  13. Szulewski, A., Egan, R., Gegenfurtner, A., Howes, D., Dashi, G., McGraw, N.C., Hall, A.K., Dagnone, D., Van Merrienboer, J.J.: A new way to look at simulation-based assessment: the relationship between gaze-tracking and exam performance. Canadian J. Emergency Med. 21(1), 129–137 (2019). https://doi.org/10.1017/cem.2018.391

    Article  Google Scholar 

  14. Tien, T., Pucher, P.H., Sodergren, M.H., Sriskandarajah, K., Yang, G.Z., Darzi, A.: Eye tracking for skills assessment and training: a systematic review. J. Surgical Res. 191(1), 169–178 (2014). https://doi.org/10.1016/j.jss.2014.04.032. https://linkinghub.elsevier.com/retrieve/pii/S0022480414004326

  15. Tomas, H., et al.: GOO: a dataset for gaze object prediction in retail environments. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 3119–3127 (2021). https://doi.org/10.1109/CVPRW53098.2021.00349. https://github.com/upeee/GOO-GAZE2021

  16. Wagner, M., et al.: Video-based reflection on neonatal interventions during COVID-19 using eye-tracking glasses: an observational study. Archives of disease in childhood. Fetal Neonatal Edition 107(2), 156–160 (2022). https://doi.org/10.1136/archdischild-2021-321806. https://fn.bmj.com/content/107/2/156 https://fn.bmj.com/content/107/2/156.abstract

  17. Wang, B., Hu, T., Li, B., Chen, X., Zhang, Z.: GaTector: a unified framework for gaze object prediction. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 19566–19575. IEEE, June 2022. https://doi.org/10.1109/CVPR52688.2022.01898. https://ieeexplore.ieee.org/document/9879784/

  18. White, M.R., et al.: Getting inside the expert’s head: an analysis of physician cognitive processes during trauma resuscitations. Ann. Emerg. Med. 72(3), 289–298 (2018). https://doi.org/10.1016/j.annemergmed.2018.03.005

  19. Xiong, Y., Zhu, K., Lin, D., Tang, X.: Recognize complex events from static images by fusing deep channels. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. vol. 07–12-June, pp. 1600–1609 (2015). https://doi.org/10.1109/CVPR.2015.7298768

  20. Yang, S., Luo, P., Loy, C.C., Tang, X.: WIDER FACE: A face detection benchmark. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. vol. 2016-Decem, pp. 5525–5533 (2016). https://doi.org/10.1109/CVPR.2016.596, http://mmlab.ie.cuhk.edu.hk/projects/

  21. Zhang, D., Wang, B., Wang, G., Zhang, Q., Zhang, J., Han, J., You, Z.: Onfocus detection: identifying individual-camera eye contact from unconstrained images. SCIENCE CHINA Inf. Sci. 65(6), 1–12 (2022). https://doi.org/10.1007/s11432-020-3181-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sapir Gershov .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 26 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gershov, S., Mahameed, F., Raz, A., Laufer, S. (2024). More Than Meets the Eye: Physicians’ Visual Attention in the Operating Room. In: Wu, S., Shabestari, B., Xing, L. (eds) Applications of Medical Artificial Intelligence. AMAI 2023. Lecture Notes in Computer Science, vol 14313. Springer, Cham. https://doi.org/10.1007/978-3-031-47076-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47076-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47075-2

  • Online ISBN: 978-3-031-47076-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics