Skip to main content

CoffeeWKG: A Weather Knowledge Graph for Coffee Regions in Colombia

  • Conference paper
  • First Online:
Advances in Conceptual Modeling (ER 2023)

Abstract

Coffee is one of the major crops produced in Colombia which is the third largest producer of coffee after Brazil and Vietnam. Together, these three countries produce more than 50% of the world’s total coffee. One of the main challenges facing coffee producers in Colombia is to determine the effects of climate variability and climate change on their production. This paper presents CoffeeWKG, an RDF knowledge graph focused on weather conditions in the coffee-growing regions of Colombia over 15 years (2006–2020), to facilitate the understanding of climate impacts on coffee crops. CoffeeWKG enables the integration of heterogeneous sensor data collected from different weather stations and the definition of semantic metadata on agro-climatic parameters. This knowledge graph enables coffee growers and experts to explore and query historical weather conditions to establish a correlation between weather data and information on coffee crops, thus revealing the complex interaction between climate and production dynamics. This research is essential to improving the resilience of agriculture and optimizing resources in the face of changing climatic challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    masl is the abbreviation of meters above sea level.

  2. 2.

    https://github.com/cfigmart/coffeeWKG/blob/main/meteo/WeKG-modular-ontology/ontology.ttl.

  3. 3.

    https://public.wmo.int/en/resources/language-resources/meteoterm/.

  4. 4.

    http://cfconventions.org/.

  5. 5.

    https://github.com/cfigmart/coffeeWKG/blob/main/meteo/dataset-metadata/DSD-CoffeeWKG.ttl.

  6. 6.

    Cenicafé yearbooks download page: https://www.cenicafe.org/es/index.php/nuestras_publicaciones/anuarios_meteorologicos.

  7. 7.

    https://tabula.technology/.

  8. 8.

    WeKG-MF GitHub repository: https://github.com/Wimmics/weather-kg.

  9. 9.

    https://github.com/frmichel/morph-xr2rml/.

  10. 10.

    CoffeeWKG download page: https://zenodo.org/record/8237867.

  11. 11.

    Apache Jena Fuseki Server: https://jena.apache.org/documentation/fuseki2.

  12. 12.

    The concept GDD is available at the URI of the GCMD vocabulary https://gcmd.earthdata.nasa.gov/kms/concept/6d808909-ce04-4401-a883-aff4d723d025.

References

  1. Ahmed, S., et al.: Climate change and coffee quality: systematic review on the effects of environmental and management variation on secondary metabolites and sensory attributes of Coffea arabica and Coffea canephora. Front. Plant Sci. 12, 708013 (2021). https://doi.org/10.3389/fpls.2021.708013

    Article  Google Scholar 

  2. Atemezing, G., et al.: Transforming meteorological data into linked data. Semant. Web 4, 285–290 (2013). https://doi.org/10.3233/SW-120089

    Article  Google Scholar 

  3. Battle, R., Kolas, D.: Enabling the geospatial semantic web with parliament and GeoSPARQL. Semant. Web 3, 355–370 (2012). https://doi.org/10.3233/SW-2012-0065

    Article  Google Scholar 

  4. Cox, S., Little, C.: Time ontology in OWL. W3C candidate recommendation draft. Technical report, W3C (2022). https://www.w3.org/TR/owl-time/

  5. Cyganiak, R., Reynolds, D.: The RDF data cube vocabulary. Technical report, W3C (2014). https://www.w3.org/TR/2014/REC-vocab-data-cube-20140116/

  6. DaMatta, F.M., Ronchi, C.P., Maestri, M., Barros, R.S.: Ecophysiology of coffee growth and production. Braz. J. Plant. Physiol. 19, 485–510 (2007). https://doi.org/10.1590/S1677-04202007000400014

    Article  Google Scholar 

  7. Davis, A.P., Gole, T.W., Baena, S., Moat, J.: The impact of climate change on indigenous arabica coffee (Coffea arabica): predicting future trends and identifying priorities. PLoS ONE 7(11), 1–13 (2012). https://doi.org/10.1371/journal.pone.0047981

    Article  Google Scholar 

  8. Haller, A., et al.: The modular SSN ontology: a joint W3C and OGC standard specifying the semantics of sensors, observations, sampling, and actuation. Semant. Web 10, 9–32 (2018). https://doi.org/10.3233/SW-180320

    Article  Google Scholar 

  9. Janowicz, K., Haller, A., Cox, S.J., Phuoc, D.L., Lefrançois, M.: SOSA: a lightweight ontology for sensors, observations, samples, and actuators. J. Web Semant. 56, 1–10 (5 2019). https://doi.org/10.1016/j.websem.2018.06.003

  10. León-Burgos, A.F., Unigarro, C., Balaguera-López, H.E.: Can prolonged conditions of water deficit alter photosynthetic performance and water relations of coffee plants in central-west Colombia? South Afr. J. Botany 149, 366–375 (2022). https://doi.org/10.1016/j.sajb.2022.06.034

    Article  Google Scholar 

  11. Matteis, L., et al.: Crop ontology: Vocabulary for crop-related concepts. In: CEUR Workshop Proceedings, vol. 979 (2013)

    Google Scholar 

  12. Michel, F., Djimenou, L., Faron-Zucker, C., Montagnat, J.: Translation of relational and non-relational databases into RDF with xR2RML. In: Proceedings of the 11th International Conference on Web Information Systems and Technologies, pp. 443–454. SCITEPRESS - Science and and Technology Publications (2015). https://doi.org/10.5220/0005448304430454

  13. Peroni, S.: A simplified agile methodology for ontology development. In: Dragoni, M., Poveda-Villalón, M., Jimenez-Ruiz, E. (eds.) OWLED/ORE -2016. LNCS, vol. 10161, pp. 55–69. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54627-8_5

    Chapter  Google Scholar 

  14. Prensa Federación Nacional de Caficultores de Colombia: en junio importaciones de café disminuyeron un 30 porciento (2023). https://federaciondecafeteros.org/wp/listado-noticias/en-junio-importaciones-de-cafe-disminuyeron-un-30/

  15. Ronchi, C.P., Miranda, F.R.: Flowering percentage in arabica coffee crops depends on the water deficit level applied during the pre-flowering stage. Rev. Caatinga 33, 195–204 (2020). https://doi.org/10.1590/1983-21252020v33n121rc

    Article  Google Scholar 

  16. Roussey, C., Delpuech, X., Amardeilh, F., Bernard, S., Jonquet, C.: Semantic description of plant phenological development stages, starting with grapevine. In: Garoufallou, E., Ovalle-Perandones, M.-A. (eds.) MTSR 2020. CCIS, vol. 1355, pp. 257–268. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-71903-6_25

    Chapter  Google Scholar 

  17. Suarez, C., Griol, D., Figueroa, C., Corrales, J.C., Corrales, D.C.: RustOnt: an ontology to explain weather favorable conditions of the coffee rust. Sensors 22, 9598 (2022). https://doi.org/10.3390/s22249598

    Article  Google Scholar 

  18. Subirats-Coll, I., et al.: AGROVOC: the linked data concept hub for food and agriculture. Comput. Electron. Agric. 196, 105965 (2022). https://doi.org/10.1016/j.compag.2020.105965

    Article  Google Scholar 

  19. Uschold, M., Gruninger, M.: Ontologies: principles, methods and applications. Knowl. Eng. Rev. 11, 93–136 (1996). https://doi.org/10.1017/S0269888900007797

    Article  Google Scholar 

  20. Vélez-Vallejo, R.: Informe del gerente - 90 congreso nacional de cafeteros. Technical report, Federación Nacional de Cafeteros de Colombia (2022). https://federaciondecafeteros.org/app/uploads/2022/12/Informe-del-Gerente-D.pdf

  21. Wu, J., Orlandi, F., O’Sullivan, D., Dev, S.: LinkClimate: an interoperable knowledge graph platform for climate data. Comput. Geosci. 169, 105215 (2022). https://doi.org/10.1016/j.cageo.2022.105215

    Article  Google Scholar 

  22. Yacoubi Ayadi, N., Faron, C., Michel, F., Gandon, F., Corby, O.: A model for meteorological knowledge graphs: application to Météo-France data. In: ICWE 2022–22nd International Conference on Web Engineering. 22nd International Conference on Web Engineering, ICWE 2022, Bari, Italy (2022). https://doi.org/10.1007/978-3-031-09917-5_19

  23. Yacoubi Ayadi, N., Faron, C., Michel, F., Gandon, F., Corby, O.: Computing and visualizing agro-meteorological parameters based on an observational weather knowledge graph. In: Ding, Y., Tang, J., Sequeda, J.F., Aroyo, L., Castillo, C., Houben, G. (eds.) Companion Proceedings of the ACM Web Conference 2023, WWW 2023, Austin, TX, USA, 30 April–4 May 2023, pp. 242–245. ACM (2023). https://doi.org/10.1145/3543873.3587357

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristhian Figueroa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Figueroa, C., Ayadi, N.Y., Audoux, N., Faron, C. (2023). CoffeeWKG: A Weather Knowledge Graph for Coffee Regions in Colombia. In: Sales, T.P., Araújo, J., Borbinha, J., Guizzardi, G. (eds) Advances in Conceptual Modeling. ER 2023. Lecture Notes in Computer Science, vol 14319. Springer, Cham. https://doi.org/10.1007/978-3-031-47112-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47112-4_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47111-7

  • Online ISBN: 978-3-031-47112-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics