Abstract
Contextual information about a statement is usually represented in RDF knowledge graphs via reification: creating a fresh ‘anchor’ term that represents the statement and using it in the triples that describe it. Current approaches make the connection between the reified statement and its anchor by either extending the RDF syntax, resulting in non-compliant RDF, or via additional triples to connect the anchor with the terms of the statement, at the cost of size and complexity.
This work tackles this challenge and presents HDTr, a binary serialization format for reified triples that is model-agnostic, compact, and queryable. HDTr is based on, and compatible with, the counterpart HDT format, leveraging its underlying structure to connect the reified statements with the terms that represent them. Our evaluation shows that HDTr improves compression and retrieval time of reified statements w.r.t. several triplestores and HDT serialization of different reification approaches.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
- 2.
Note that the triples that indicate the types of some individuals can be considered as optional, since they can be inferred by the semantics of the vocabularies.
- 3.
- 4.
- 5.
- 6.
- 7.
? is used to indicate variables in the triple pattern.
- 8.
The subscript T is added to the names of the sections to indicate that they belong to the Triples Dictionary.
- 9.
The subscript A refers to the Anchors Dictionary.
- 10.
For the sake of simplicity, we assume that tp and a have previously mapped to IDs and, conversely, the returned resultset is then mapped to their corresponding terms.
- 11.
We use a HDTr prototype implemented in C++. See the supplemental material statement at the end of the document.
- 12.
We use the HDT C++ library. Please find the concrete forked version and additional details in the supplemental material statement specified at the end of this document.
- 13.
Our hypothesis is that HDTQ was designed to encode named graphs, making assumptions (e.g., the proportion of named graphs to triples or the use of named graphs as terms in statements) that have a negative impact in its ability to encode reified statements.
References
Beek, W., Rietveld, L., Bazoobandi, H.R., Wielemaker, J., Schlobach, S.: LOD laundromat: a uniform way of publishing other people’s dirty data. In: ISWC (2014)
Berners-Lee, T., Connolly, D.: Notation3 (N3): A readable RDF syntax. W3C (2011)
Briandais, R.D.L.: File searching using variable length keys. In: IRE-AIEE-ACM (1959)
Brickley, D., Guha, R.V.: RDF vocabulary description language 1.0: RDF schema. In: W3C (2004)
Carlson, A., Betteridge, J., Hruschka, E.R., Mitchell, T.M.: Coupling Semi-supervised Learning of Categories and Relations. In: SSLNLP (2009)
Carroll, J.J., Bizer, C., Hayes, P.J., Stickler, P.: Named graphs. JWS 3(4), 247–267 (2005)
Cyganiak, R., Wood, D., Lanthaler, M.: RDF 1.1 concepts and abstract syntax. In: W3C (2014)
Diefenbach, D., Both, A., Singh, K., Maret, P.: Towards a question answering system over the Semantic Web. Semantic Web 11(3), 421–439 (2020)
Diefenbach, D., Thalhammer, A.: PageRank and Generic Entity Summarization for RDF Knowledge Bases. In: ESWC (2018)
Fernández, J.D., Beek, W., Martínez-Prieto, M.A., Arias, M.: LOD-a-lot: a queryable dump of the LOD cloud. In: ISWC (2017)
Fernández, J.D., Martínez-Prieto, M.A., Gutiérrez, C., Polleres, A., Arias, M.: Binary RDF representation for publication and exchange (HDT). JWS 19, 22–41 (2013)
Fernández, J.D., Martínez-Prieto, M.A., Polleres, A., Reindorf, J.: HDTQ: Managing RDF Datasets in Compressed Space. In: ESWC (2018)
Frey, J., Müller, K., Hellmann, S., Rahm, E., Vidal, M.-E.: Evaluation of metadata representations in RDF stores. SWJ 10(2), 205–229 (2017)
Giménez-García, J.M., Duarte, M., Zimmermann, A., Gravier, C., Hruschka Jr., E.R., Maret, P.: NELL2RDF: Reading the web, tracking the provenance, and publishing it as linked data. In: CKG (2018)
Giménez-García, J.M., Zimmermann, A.: NdProperties: encoding contexts in RDF predicates with inference preservation. In: CKG (2018)
Giménez-García, J.M., Zimmermann, A., Maret, P.: NdFluents: an ontology for Annotated Statements with Inference Preservation. In: ESWC (2017)
Hartig, O., et al.: RDF-star and SPARQL-star. In: W3C (2021)
Hayes, P.J., Patel-Schneider, P.F.: RDF 1.1 semantics. In: W3C (2014)
Hernández, D., Hogan, A., Krötzsch, M.: Reifying RDF: What Works Well With Wikidata? SSWS (2015)
Hernández, D., Hogan, A., Riveros, C., Rojas, C., Zerega, E.: Querying Wikidata: Comparing SPARQL. Relational and Graph Databases, ISWC (2016)
Hernández-Illera, A., Martínez-Prieto, M.A., Fernández, J.D., Fariña, A.: iHDT++: improving HDT for SPARQL triple pattern resolution. JIFS 39(2), 2249–2261 (2020)
Hogan, A., et al.: Knowledge Graphs. Springer, Cham (2021). https://doi.org/10.1007/978-3-031-01918-0
Martínez-Prieto, M., Arias, M., Fernández, J.: Exchange and consumption of huge RDF Data. In: ESWC (2012)
Martínez-Prieto, M.A., Brisaboa, N.R., Cánovas, R., Claude, F., Navarro, G.: Practical compressed string dictionaries. IS 56, 73–108 (2016)
Martínez-Prieto, M.A., Fernández, J.D., Hernández-Illera, A., Gutierrez, C.: Knowledge graph compression for big semantic data. In: Encyclopedia of Big Data Technologies (2022)
Mitchell, T.M., et al.: Never-ending learning. In: AAAI (2015)
Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Succinct representations of permutations and functions. TCS 438, 74–88 (2012)
Nardi, D., Brachman, R.J.: An Introduction to Description Logics. Theory, Implementation, and Applications, The Description Logic Handbook (2003)
Navarro, G.: Compact Data Structures - A Practical Approach. Cambridge University Press, Cambridge (2016)
Nguyen, V., Bodenreider, O., Sheth, A.: Don’t like RDF reification?: Making statements about statements using singleton property. In: WWW (2014)
Noy, N., Rector, A., Hayes, P., Welty, C.: Defining N-ary relations on the semantic web. In: W3C (2006)
Pelgrin, O.P., Hose, K., Galárraga, L.: TrieDF: Efficient in-memory indexing for metadata-augmented RDF. In: MEPDaW (2021)
Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF (2008)
Verborgh, R., et al.: Triple pattern fragments: a low-cost knowledge graph interface for the web. JWS 37–38, 184–206 (2016)
Verborgh, R., Vander Sande, M., Shankar, H., Balakireva, L., Van de Sompel, H.: Devising affordable and functional linked data archives. TCDL. 13(1), 1–8 (2017)
Willerval, A., Diefenbach, D., Bonifati, A.: qEndpoint: A Wikidata SPARQL endpoint on commodity hardware. WWW_Demo (2023)
Acknowledgments
This work has been partially funded by the Spanish Ministry of Science and Innovation through LOD.For.Trees (TED2021-130667B-I00), EXTRACompact (PID2020-114635RB-I00), and PLAGEMIS-UDC (TED2021-129245B-C21) projects, and from the EU H2020 research and innovation program under the Marie Skłodowska-Curie grant No 642795.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Gimenez-Garcia, J.M., Gautrais, T., Fernández, J.D., Martínez-Prieto, M.A. (2023). Compact Encoding of Reified Triples Using HDTr. In: Payne, T.R., et al. The Semantic Web – ISWC 2023. ISWC 2023. Lecture Notes in Computer Science, vol 14265. Springer, Cham. https://doi.org/10.1007/978-3-031-47240-4_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-47240-4_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-47239-8
Online ISBN: 978-3-031-47240-4
eBook Packages: Computer ScienceComputer Science (R0)