Skip to main content

Compact Encoding of Reified Triples Using HDTr

  • Conference paper
  • First Online:
The Semantic Web – ISWC 2023 (ISWC 2023)

Abstract

Contextual information about a statement is usually represented in RDF knowledge graphs via reification: creating a fresh ‘anchor’ term that represents the statement and using it in the triples that describe it. Current approaches make the connection between the reified statement and its anchor by either extending the RDF syntax, resulting in non-compliant RDF, or via additional triples to connect the anchor with the terms of the statement, at the cost of size and complexity.

This work tackles this challenge and presents HDTr, a binary serialization format for reified triples that is model-agnostic, compact, and queryable. HDTr is based on, and compatible with, the counterpart HDT format, leveraging its underlying structure to connect the reified statements with the terms that represent them. Our evaluation shows that HDTr improves compression and retrieval time of reified statements w.r.t. several triplestores and HDT serialization of different reification approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://wikidata-todo.toolforge.org/stats.php.

  2. 2.

    Note that the triples that indicate the types of some individuals can be considered as optional, since they can be inferred by the semantics of the vocabularies.

  3. 3.

    https://cambridgesemantics.com/anzograph/.

  4. 4.

    https://www.blazegraph.com/.

  5. 5.

    http://graphdb.ontotext.com/.

  6. 6.

    https://www.stardog.com/.

  7. 7.

    ? is used to indicate variables in the triple pattern.

  8. 8.

    The subscript T is added to the names of the sections to indicate that they belong to the Triples Dictionary.

  9. 9.

    The subscript A refers to the Anchors Dictionary.

  10. 10.

    For the sake of simplicity, we assume that tp and a have previously mapped to IDs and, conversely, the returned resultset is then mapped to their corresponding terms.

  11. 11.

    We use a HDTr prototype implemented in C++. See the supplemental material statement at the end of the document.

  12. 12.

    We use the HDT C++ library. Please find the concrete forked version and additional details in the supplemental material statement specified at the end of this document.

  13. 13.

    Our hypothesis is that HDTQ was designed to encode named graphs, making assumptions (e.g., the proportion of named graphs to triples or the use of named graphs as terms in statements) that have a negative impact in its ability to encode reified statements.

References

  1. Beek, W., Rietveld, L., Bazoobandi, H.R., Wielemaker, J., Schlobach, S.: LOD laundromat: a uniform way of publishing other people’s dirty data. In: ISWC (2014)

    Google Scholar 

  2. Berners-Lee, T., Connolly, D.: Notation3 (N3): A readable RDF syntax. W3C (2011)

    Google Scholar 

  3. Briandais, R.D.L.: File searching using variable length keys. In: IRE-AIEE-ACM (1959)

    Google Scholar 

  4. Brickley, D., Guha, R.V.: RDF vocabulary description language 1.0: RDF schema. In: W3C (2004)

    Google Scholar 

  5. Carlson, A., Betteridge, J., Hruschka, E.R., Mitchell, T.M.: Coupling Semi-supervised Learning of Categories and Relations. In: SSLNLP (2009)

    Google Scholar 

  6. Carroll, J.J., Bizer, C., Hayes, P.J., Stickler, P.: Named graphs. JWS 3(4), 247–267 (2005)

    Article  Google Scholar 

  7. Cyganiak, R., Wood, D., Lanthaler, M.: RDF 1.1 concepts and abstract syntax. In: W3C (2014)

    Google Scholar 

  8. Diefenbach, D., Both, A., Singh, K., Maret, P.: Towards a question answering system over the Semantic Web. Semantic Web 11(3), 421–439 (2020)

    Article  Google Scholar 

  9. Diefenbach, D., Thalhammer, A.: PageRank and Generic Entity Summarization for RDF Knowledge Bases. In: ESWC (2018)

    Google Scholar 

  10. Fernández, J.D., Beek, W., Martínez-Prieto, M.A., Arias, M.: LOD-a-lot: a queryable dump of the LOD cloud. In: ISWC (2017)

    Google Scholar 

  11. Fernández, J.D., Martínez-Prieto, M.A., Gutiérrez, C., Polleres, A., Arias, M.: Binary RDF representation for publication and exchange (HDT). JWS 19, 22–41 (2013)

    Article  Google Scholar 

  12. Fernández, J.D., Martínez-Prieto, M.A., Polleres, A., Reindorf, J.: HDTQ: Managing RDF Datasets in Compressed Space. In: ESWC (2018)

    Google Scholar 

  13. Frey, J., Müller, K., Hellmann, S., Rahm, E., Vidal, M.-E.: Evaluation of metadata representations in RDF stores. SWJ 10(2), 205–229 (2017)

    Google Scholar 

  14. Giménez-García, J.M., Duarte, M., Zimmermann, A., Gravier, C., Hruschka Jr., E.R., Maret, P.: NELL2RDF: Reading the web, tracking the provenance, and publishing it as linked data. In: CKG (2018)

    Google Scholar 

  15. Giménez-García, J.M., Zimmermann, A.: NdProperties: encoding contexts in RDF predicates with inference preservation. In: CKG (2018)

    Google Scholar 

  16. Giménez-García, J.M., Zimmermann, A., Maret, P.: NdFluents: an ontology for Annotated Statements with Inference Preservation. In: ESWC (2017)

    Google Scholar 

  17. Hartig, O., et al.: RDF-star and SPARQL-star. In: W3C (2021)

    Google Scholar 

  18. Hayes, P.J., Patel-Schneider, P.F.: RDF 1.1 semantics. In: W3C (2014)

    Google Scholar 

  19. Hernández, D., Hogan, A., Krötzsch, M.: Reifying RDF: What Works Well With Wikidata? SSWS (2015)

    Google Scholar 

  20. Hernández, D., Hogan, A., Riveros, C., Rojas, C., Zerega, E.: Querying Wikidata: Comparing SPARQL. Relational and Graph Databases, ISWC (2016)

    Google Scholar 

  21. Hernández-Illera, A., Martínez-Prieto, M.A., Fernández, J.D., Fariña, A.: iHDT++: improving HDT for SPARQL triple pattern resolution. JIFS 39(2), 2249–2261 (2020)

    Google Scholar 

  22. Hogan, A., et al.: Knowledge Graphs. Springer, Cham (2021). https://doi.org/10.1007/978-3-031-01918-0

    Book  MATH  Google Scholar 

  23. Martínez-Prieto, M., Arias, M., Fernández, J.: Exchange and consumption of huge RDF Data. In: ESWC (2012)

    Google Scholar 

  24. Martínez-Prieto, M.A., Brisaboa, N.R., Cánovas, R., Claude, F., Navarro, G.: Practical compressed string dictionaries. IS 56, 73–108 (2016)

    Google Scholar 

  25. Martínez-Prieto, M.A., Fernández, J.D., Hernández-Illera, A., Gutierrez, C.: Knowledge graph compression for big semantic data. In: Encyclopedia of Big Data Technologies (2022)

    Google Scholar 

  26. Mitchell, T.M., et al.: Never-ending learning. In: AAAI (2015)

    Google Scholar 

  27. Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Succinct representations of permutations and functions. TCS 438, 74–88 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Nardi, D., Brachman, R.J.: An Introduction to Description Logics. Theory, Implementation, and Applications, The Description Logic Handbook (2003)

    Google Scholar 

  29. Navarro, G.: Compact Data Structures - A Practical Approach. Cambridge University Press, Cambridge (2016)

    Google Scholar 

  30. Nguyen, V., Bodenreider, O., Sheth, A.: Don’t like RDF reification?: Making statements about statements using singleton property. In: WWW (2014)

    Google Scholar 

  31. Noy, N., Rector, A., Hayes, P., Welty, C.: Defining N-ary relations on the semantic web. In: W3C (2006)

    Google Scholar 

  32. Pelgrin, O.P., Hose, K., Galárraga, L.: TrieDF: Efficient in-memory indexing for metadata-augmented RDF. In: MEPDaW (2021)

    Google Scholar 

  33. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF (2008)

    Google Scholar 

  34. Verborgh, R., et al.: Triple pattern fragments: a low-cost knowledge graph interface for the web. JWS 37–38, 184–206 (2016)

    Article  Google Scholar 

  35. Verborgh, R., Vander Sande, M., Shankar, H., Balakireva, L., Van de Sompel, H.: Devising affordable and functional linked data archives. TCDL. 13(1), 1–8 (2017)

    Google Scholar 

  36. Willerval, A., Diefenbach, D., Bonifati, A.: qEndpoint: A Wikidata SPARQL endpoint on commodity hardware. WWW_Demo (2023)

    Google Scholar 

Download references

Acknowledgments

This work has been partially funded by the Spanish Ministry of Science and Innovation through LOD.For.Trees (TED2021-130667B-I00), EXTRACompact (PID2020-114635RB-I00), and PLAGEMIS-UDC (TED2021-129245B-C21) projects, and from the EU H2020 research and innovation program under the Marie Skłodowska-Curie grant No 642795.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose M. Gimenez-Garcia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gimenez-Garcia, J.M., Gautrais, T., Fernández, J.D., Martínez-Prieto, M.A. (2023). Compact Encoding of Reified Triples Using HDTr. In: Payne, T.R., et al. The Semantic Web – ISWC 2023. ISWC 2023. Lecture Notes in Computer Science, vol 14265. Springer, Cham. https://doi.org/10.1007/978-3-031-47240-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47240-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47239-8

  • Online ISBN: 978-3-031-47240-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics