Skip to main content

Can ChatGPT Replace Traditional KBQA Models? An In-Depth Analysis of the Question Answering Performance of the GPT LLM Family

  • Conference paper
  • First Online:
The Semantic Web – ISWC 2023 (ISWC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14265))

Included in the following conference series:

Abstract

ChatGPT is a powerful large language model (LLM) that covers knowledge resources such as Wikipedia and supports natural language question answering using its own knowledge. Therefore, there is growing interest in exploring whether ChatGPT can replace traditional knowledge-based question answering (KBQA) models. Although there have been some works analyzing the question answering performance of ChatGPT, there is still a lack of large-scale, comprehensive testing of various types of complex questions to analyze the limitations of the model. In this paper, we present a framework that follows the black-box testing specifications of CheckList proposed by [38]. We evaluate ChatGPT and its family of LLMs on eight real-world KB-based complex question answering datasets, which include six English datasets and two multilingual datasets. The total number of test cases is approximately 190,000. In addition to the GPT family of LLMs, we also evaluate the well-known FLAN-T5 to identify commonalities between the GPT family and other LLMs. The dataset and code are available at https://github.com/tan92hl/Complex-Question-Answering-Evaluation-of-GPT-family.git.

Y. Tan and D. Min—Contribute equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bai, Y., et al.: Benchmarking foundation models with language-model-as-an-examiner. arXiv preprint arXiv:2306.04181 (2023)

  2. Bang, Y., et al.: A multitask, multilingual, multimodal evaluation of ChatGPT on reasoning, hallucination, and interactivity. arXiv e-prints, arXiv-2302 (2023)

    Google Scholar 

  3. Belinkov, Y., Glass, J.: Analysis methods in neural language processing: a survey. Trans. Assoc. Comput. Linguist. 7, 49–72 (2019)

    Article  Google Scholar 

  4. Brown, T., et al.: Language models are few-shot learners. Adv. Neural. Inf. Process. Syst. 33, 1877–1901 (2020)

    Google Scholar 

  5. Cao, S., et al.: KQA Pro: a dataset with explicit compositional programs for complex question answering over knowledge base. In: Proceedings ACL Conference, pp. 6101–6119 (2022)

    Google Scholar 

  6. Chang, Y., et al.: A survey on evaluation of large language models. arXiv preprint arXiv:2307.03109 (2023)

  7. Chen, X., et al.: How robust is GPT-3.5 to predecessors? A comprehensive study on language understanding tasks. arXiv e-prints, arXiv-2303 (2023)

    Google Scholar 

  8. Chowdhery, A., et al.: PaLM: scaling language modeling with pathways. arXiv e-prints, arXiv-2204 (2022)

    Google Scholar 

  9. Chung, H.W., et al.: Scaling instruction-finetuned language models. arXiv preprint arXiv:2210.11416 (2022)

  10. Fu, C., et al.: MME: a comprehensive evaluation benchmark for multimodal large language models. arXiv preprint arXiv:2306.13394 (2023)

  11. Fu, Y., Peng, H., Khot, T.: How does GPT obtain its ability? Tracing emergent abilities of language models to their sources. Yao Fu’s Notion (2022)

    Google Scholar 

  12. Gu, Y., et al.: Beyond IID: three levels of generalization for question answering on knowledge bases. In: Proceedings WWW Conference, pp. 3477–3488 (2021)

    Google Scholar 

  13. Gu, Y., Su, Y.: ArcaneQA: dynamic program induction and contextualized encoding for knowledge base question answering. In: Proceedings COLING Conference, pp. 1718–1731 (2022)

    Google Scholar 

  14. He, H., Choi, J.D.: The stem cell hypothesis: dilemma behind multi-task learning with transformer encoders. In: Proceedings EMNLP Conference, pp. 5555–5577 (2021)

    Google Scholar 

  15. Hu, X., Wu, X., Shu, Y., Qu, Y.: Logical form generation via multi-task learning for complex question answering over knowledge bases. In: Proceedings ICCL Conference, pp. 1687–1696 (2022)

    Google Scholar 

  16. Huang, F., Kwak, H., An, J.: Is ChatGPT better than human annotators? Potential and limitations of ChatGPT in explaining implicit hate speech. arXiv e-prints, arXiv-2302 (2023)

    Google Scholar 

  17. Jiang, Z., Xu, F.F., Araki, J., Neubig, G.: How can we know what language models know? Trans. Assoc. Comput. Linguist. 8, 423–438 (2020)

    Article  Google Scholar 

  18. Kenton, J.D.M.W.C., Toutanova, L.K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings NAACL-HLT Conference, pp. 4171–4186 (2019)

    Google Scholar 

  19. Kocoń, J., et al.: ChatGPT: jack of all trades, master of none. arXiv e-prints, arXiv-2302 (2023)

    Google Scholar 

  20. Kojima, T., Gu, S.S., Reid, M., Matsuo, Y., Iwasawa, Y.: Large language models are zero-shot reasoners. arXiv preprint arXiv:2205.11916 (2022)

  21. Liang, P., et al.: Holistic evaluation of language models. arXiv e-prints, arXiv-2211 (2022)

    Google Scholar 

  22. Longpre, S., Lu, Y., Daiber, J.: MKQA: a linguistically diverse benchmark for multilingual open domain question answering. Trans. Assoc. Comput. Linguist. 9, 1389–1406 (2021)

    Article  Google Scholar 

  23. Lyu, C., Xu, J., Wang, L.: New trends in machine translation using large language models: case examples with ChatGPT. arXiv preprint arXiv:2305.01181 (2023)

  24. Ngomo, N.: 9th challenge on question answering over linked data (QALD-9). Language 7(1), 58–64 (2018)

    Google Scholar 

  25. Nie, L., et al.: GraphQ IR: unifying the semantic parsing of graph query languages with one intermediate representation. In: Proceedings EMNLP Conference, pp. 5848–5865 (2022)

    Google Scholar 

  26. Omar, R., Mangukiya, O., Kalnis, P., Mansour, E.: ChatGPT versus traditional question answering for knowledge graphs: current status and future directions towards knowledge graph chatbots. arXiv e-prints, arXiv-2302 (2023)

    Google Scholar 

  27. OpenAI: GPT-4 technical report (2023)

    Google Scholar 

  28. Ouyang, L., et al.: Training language models to follow instructions with human feedback. arXiv e-prints, arXiv-2203 (2022)

    Google Scholar 

  29. Perevalov, A., Yan, X., Kovriguina, L., Jiang, L., Both, A., Usbeck, R.: Knowledge graph question answering leaderboard: a community resource to prevent a replication crisis. In: Proceedings LREC Conference, pp. 2998–3007 (2022)

    Google Scholar 

  30. Petroni, F., et al.: Language models as knowledge bases? In: Proceedings IJCAI Conference, pp. 2463–2473 (2019)

    Google Scholar 

  31. Pramanik, S., Alabi, J., Saha Roy, R., Weikum, G.: UNIQORN: unified question answering over RDF knowledge graphs and natural language text. arXiv e-prints, arXiv-2108 (2021)

    Google Scholar 

  32. Purkayastha, S., Dana, S., Garg, D., Khandelwal, D., Bhargav, G.S.: A deep neural approach to KGQA via SPARQL silhouette generation. In: Proceedings IJCNN Conference, pp. 1–8. IEEE (2022)

    Google Scholar 

  33. Qin, C., Zhang, A., Zhang, Z., Chen, J., Yasunaga, M., Yang, D.: Is ChatGPT a general-purpose natural language processing task solver? arXiv e-prints, arXiv-2302 (2023)

    Google Scholar 

  34. Qin, G., Eisner, J.: Learning how to ask: querying LMS with mixtures of soft prompts. In: Proceedings NAACL-HLT Conference (2021)

    Google Scholar 

  35. Rae, J.W., et al.: Scaling language models: methods, analysis & insights from training gopher. arXiv e-prints, arXiv-2112 (2021)

    Google Scholar 

  36. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res. 21(1), 5485–5551 (2020)

    MathSciNet  Google Scholar 

  37. Reynolds, L., McDonell, K.: Prompt programming for large language models: beyond the few-shot paradigm. In: Proceedings CHI EA Conference, pp. 1–7 (2021)

    Google Scholar 

  38. Ribeiro, M.T., Wu, T., Guestrin, C., Singh, S.: Beyond accuracy: behavioral testing of NLP models with checklist. In: Proceedings ACL Conference, pp. 4902–4912 (2020)

    Google Scholar 

  39. Rychalska, B., Basaj, D., Gosiewska, A., Biecek, P.: Models in the wild: on corruption robustness of neural NLP systems. In: Proceedings ICONIP Conference, pp. 235–247 (2019)

    Google Scholar 

  40. Segura, S., Fraser, G., Sanchez, A.B., Ruiz-Cortés, A.: A survey on metamorphic testing. IEEE Trans. Software Eng. 42(9), 805–824 (2016)

    Article  Google Scholar 

  41. Srivastava, A., et al.: Beyond the imitation game: quantifying and extrapolating the capabilities of language models. arXiv preprint arXiv:2206.04615 (2022)

  42. Su, Y., et al.: On generating characteristic-rich question sets for QA evaluation. In: Proceedings EMNLP Conference, pp. 562–572 (2016)

    Google Scholar 

  43. Talmor, A., Berant, J.: The web as a knowledge-base for answering complex questions. In: Proceedings ACL Conference, pp. 641–651 (2018)

    Google Scholar 

  44. Tjong Kim Sang, E.F., De Meulder, F.: Introduction to the CoNLL-2003 shared task: language-independent named entity recognition. In: Proceedings NAACL-HLT Conference, pp. 142–147 (2003)

    Google Scholar 

  45. Wang, A., et al.: SuperGLUE: a stickier benchmark for general-purpose language understanding systems. In: Proceedings NeurIPS Conference, pp. 3266–3280 (2019)

    Google Scholar 

  46. Wang, J., Liang, Y., Meng, F., Li, Z., Qu, J., Zhou, J.: Cross-lingual summarization via chatgpt. arXiv e-prints, arXiv-2302 (2023)

    Google Scholar 

  47. Wang, S., Scells, H., Koopman, B., Zuccon, G.: Can ChatGPT write a good Boolean query for systematic review literature search? arXiv e-prints, arXiv-2302 (2023)

    Google Scholar 

  48. Wei, J., et al.: Chain of thought prompting elicits reasoning in large language models. arXiv preprint arXiv:2201.11903 (2022)

  49. Wu, T., Ribeiro, M.T., Heer, J., Weld, D.S.: Errudite: scalable, reproducible, and testable error analysis. In: Proceedings ACL Conference, pp. 747–763 (2019)

    Google Scholar 

  50. Ye, X., Yavuz, S., Hashimoto, K., Zhou, Y., Xiong, C.: RNG-KBQA: generation augmented iterative ranking for knowledge base question answering. In: Proceedings ACL Conference, pp. 6032–6043 (2022)

    Google Scholar 

  51. Yih, W.T., Richardson, M., Meek, C., Chang, M.W., Suh, J.: The value of semantic parse labeling for knowledge base question answering. In: Proceedings ACL Conference, pp. 201–206 (2016)

    Google Scholar 

  52. Zhong, Q., Ding, L., Liu, J., Du, B., Tao, D.: Can ChatGPT understand too? A comparative study on ChatGPT and fine-tuned BERT. arXiv e-prints, arXiv-2302 (2023)

    Google Scholar 

  53. Zhu, K., et al.: PromptBench: towards evaluating the robustness of large language models on adversarial prompts. arXiv preprint arXiv:2306.04528 (2023)

  54. Zhuo, T.Y., Huang, Y., Chen, C., Xing, Z.: Exploring AI ethics of ChatGPT: a diagnostic analysis. arXiv e-prints, arXiv-2301 (2023)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the Natural Science Foundation of China (Grant No. U21A20488). We thank the Big Data Computing Center of Southeast University for providing the facility support on the numerical calculations in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilin Qi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tan, Y. et al. (2023). Can ChatGPT Replace Traditional KBQA Models? An In-Depth Analysis of the Question Answering Performance of the GPT LLM Family. In: Payne, T.R., et al. The Semantic Web – ISWC 2023. ISWC 2023. Lecture Notes in Computer Science, vol 14265. Springer, Cham. https://doi.org/10.1007/978-3-031-47240-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47240-4_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47239-8

  • Online ISBN: 978-3-031-47240-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics