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Abstract. ChatGPT is a powerful large language model (LLM) that
covers knowledge resources such as Wikipedia and supports natural lan-
guage question answering using its own knowledge. Therefore, there is
growing interest in exploring whether ChatGPT can replace traditional
knowledge-based question answering (KBQA) models. Although there
have been some works analyzing the question answering performance
of ChatGPT, there is still a lack of large-scale, comprehensive testing
of various types of complex questions to analyze the limitations of the
model. In this paper, we present a framework that follows the black-
box testing specifications of CheckList proposed by [38]. We evaluate
ChatGPT and its family of LLMs on eight real-world KB-based com-
plex question answering datasets, which include six English datasets
and two multilingual datasets. The total number of test cases is ap-
proximately 190,000. In addition to the GPT family of LLMs, we also
evaluate the well-known FLAN-T5 to identify commonalities between
the GPT family and other LLMs. The dataset and code are available at
https://github.com/tan92hl/Complex-Question-Answering-Evaluation-o
f-GPT-family.git

Keywords: Large language model · Complex question answering · Knowl-
edge base · ChatGPT · Evaluation · Black-box testing.

1 Introduction

Given its extensive coverage of knowledge from Wikipedia as training data and
its impressive natural language understanding ability, ChatGPT has demon-
strated powerful question-answering abilities by leveraging its own knowledge.
⋆ Yiming Tan and Dehai Min contribute equally to this work.

⋆⋆ Corresponding author

ar
X

iv
:2

30
3.

07
99

2v
3 

 [
cs

.C
L

] 
 2

0 
Se

p 
20

23



2 Y. Tan et al.

Additionally, a study conducted by [30] suggests that language models can be
considered as knowledge bases (KBs) to support downstream natural language
processing (NLP) tasks. This has led to growing interest in exploring whether
ChatGPT and related large language models (LLMs) can replace traditional
Knowledge-Based Question Answering (KBQA) models.

There have been many evaluations of ChatGPT [52,19,7,54,16,26,47,46,33,2],
some of which include the testing of question answering tasks and have yielded
interesting conclusions: for example, [26] showed that ChatGPT has lower sta-
bility than traditional KBQA models on a test set of 200 questions, and [2]
found that ChatGPT is a "lazy reasoner" that suffers more with induction after
analyzing 30 samples. However, due to the limited number of test cases, it is dif-
ficult to perform a comprehensive evaluation of ChatGPT’s performance on the
KBQA task based on these findings. Moreover, the reliability of these findings
still requires further testing for validation. We find that the difficulty in answer
evaluation is the main reason why existing works have not conducted large-scale
KBQA tests on ChatGPT, which outputs sentences or paragraphs that contain
answers rather than an exact answer. Furthermore, due to the influence of the
generated textual context, the answer sequence of ChatGPT may not necessar-
ily correspond strictly to entity names in the knowledge base. Therefore, the
traditional Exact Match (EM) metric cannot directly evaluate the output of
ChatGPT for question-answering. Consequently, most of the works mentioned
above rely on manual evaluation.

In this paper, we select the KB-based Complex Question Answering (KB-
based CQA) task to comprehensively evaluate the ability of LLMs to answer
complex questions based on their own knowledge. This task requires the model
to use compositional reasoning to obtain the answer to the question, which in-
cludes multi-hop reasoning, attribute comparison, set operations, and other com-
plex reasoning. We believe that evaluating ChatGPT’s performance in complex
knowledge question answering using its own knowledge can help us understand
whether existing LLMs have the potential to surpass traditional KBQA models
or whether ChatGPT is already capable of replacing the current best KBQA
models. Therefore, we collect test data from existing KB-based CQA datasets
and establish an evaluation framework.

Our evaluation framework consists of two parts: 1) the feature-driven unified
labeling method is established for the KBQA datasets involved in the testing;
and 2) the evaluation of answers generated by LLMs. Inspired by the approach
of using multiple scenario tags to evaluate language models in the HELM frame-
work [21], we label each test question with unified answer-type, inference-type,
and language-type tags. In the answer evaluation part, we first improve the Ex-
act Match (EM) method so that it can be used to evaluate the accuracy of
LLMs’ output. The main process of improved EM is to extract potential answer
phrases from the LLM output through constituent trees as the candidate answer
pool, and then match them with the reference answer pool formed by annotated
answers and aliases provided by wikidata. Next, we follow the CheckList testing
specification [38] and set up three tests: the minimal functionality test (MFT),
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invariance test (INV) [40], and directional expectation test (DIR). Along with an
overall evaluation, these tests assess the LLMs’ capability, stability, and control
when answering questions and performing specific reasoning operations.

Finally, we collect six English real-world KB-based CQA datasets and two
multilingual real-world KB-based CQA datasets for our evaluation experiment,
with a scale of approximately 190,000 questions, including approximately 12,000
multilingual questions covering 13 languages. In the experiment, we mainly com-
pare the QA performance differences between the traditional the current state-
of-the-art (SOTA) models and the GPT family models [4,28,27]. In addition, we
also introduce the open-source LLM FLAN-T5 [9] model as a representative of
the non-GPT family for comparison. Like ChatGPT, all the LLMs involved in
the comparison in this paper use their own knowledge to answer questions and
are considered unsupervised models.

Our key findings and insights are summarized as follows:
ChatGPT and the LLMs of GPT family outperform the best traditional

models on some old datasets like WQSP and LC-quad2.0, but they still lag
behind the current state-of-the-art on the latest released KBQA datase such as
KQApro and GrailQA.

GPT family LLMs and the FLAN-T5 model tend to have similar tendencies
in terms of strengths and weaknesses when answering different types of questions.

Using chain-of-thought prompts in CheckList testing enhances GPT LLMs’
ability to answer specific questions but may negatively impact other question
types, suggesting their potential and sensitivities for future task-specific appli-
cations.

2 Related Work

2.1 Large language models and prompting

In recent years, LLMs and prompt learning have attracted considerable atten-
tion. Groundbreaking studies such as [30,17,4] revealed that LLMs, when given
appropriate textual prompts, can perform a wide range of NLP tasks with zero-
shot or few-shot learning without gradient updates. On the one hand, improved
prompting can enable the information contained in the LLM to be more accu-
rately applied to the target task, and early representative works include [37,34]
The chain-of-thought (CoT) [48] method is a distinguished approach in effective
prompt research. CoT enables LLMs to have a better understanding and think
more when answering questions. On the other hand, much work has been done
to improve the natural language understanding ability of LLMs, including Go-
pher [35] and PaLM [8], which aim to extend LLMs. Undoubtedly, ChatGPT
has garnered significant attention as a prominent LLM due to its remarkable
natural language understanding abilities. It is trained on the GPT-3.5 series of
models [11] using RLHF.
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2.2 Evaluation of the large language model

While LLMs have demonstrated outstanding natural language understanding
and generation capabilities, it is still necessary to further research their strengths,
limitations, and potential risks to fully understand their advantages. Recently,
many works aimed at evaluating LLMs have been proposed [6], including gen-
eral benchmarks like HELM [21], Bigbench [41], Promptbench [53], and MME
[10]. These aim to categorize and summarize multiple existing tasks, providing
a macro-level assessment of LLM performance and potential biases. Other stud-
ies focus on specific NLP tasks, such as summarization [2], question-answering
[2,1,26], and machine translation [23]. In these existing works, the advantages of
the general benchmark approaches lie in their fine-grained sample classification
and high testing efficiency. However, these benchmarks are limited by the use
of automated metrics, which restrict the diversity of testing objectives. On the
other hand, evaluating task-specialized LLMs introduces more manually defined
testing objectives, such as interpretability, determinism, robustness, and ques-
tion understanding. Nevertheless, due to manual testing costs, these evaluations
often rely on small samples (less than 10k) and coarsely categorized datasets.

In this paper, we combine the strengths of both benchmark studies and task-
specific manual evaluations to test the GPT family LLMs. To achieve this, we
adopt a strategy inspired by HELM [21], which uses multiple feature labels to
describe and categorize task types, especially complex problem types. Addition-
ally, we incorporate the manually predefined testing objectives from [26] and
combine them with the CheckList natural language model’s black-box testing
strategy. This comprehensive and diverse testing approach allows us to draw
more comprehensive and valuable conclusions.

2.3 Black-box testing of the NLP model

The prohibitive expense associated with training LLMs renders white-box test-
ing an impractical approach. Consequently, the majority of assessment efforts
presently concentrate on black-box evaluation approaches for LLMs. For exam-
ple, the methods used by [3,39] for evaluating robustness, the methods used by
[49] for adversarial changes, and attention and interpretability within LLMs re-
search conducted by [45]. The most comprehensive approach currently available
is the CheckList approach proposed by [38], which categorizes evaluation targets
into three parts: the minimum functionality test (MFT), invariance test (INV),
and directional expectation test (DIR). The MFT examines a model’s basic func-
tionality, INV examines whether the model can maintain functional correctness
when non-answer-affecting information is added to the input, and DIR examines
whether the model can output the expected result when the input is modified. In
this work, we follow the idea of CheckList and use CoT prompting to generate
test cases for DIR.
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Fig. 1. Overview of proposed Evaluation Framework.

3 Evaluation Framework

As mentioned in Section 1, our KBQA evaluation framework consists of two
parts. The first part aims to assign uniform feature labels to the questions in the
datasets. The second part includes an improved Exact Match answer evaluation
strategy and an extended CheckList test. Figure 1 illustrates the overall process
of the framework. The detailed process is described in the following section.

3.1 Feature-driven unified question labeling

We collect multiple existing KB-based CQA datasets for the evaluation. How-
ever, due to the different annotation rules used for features such as answer and
reasoning type in each dataset, we need to establish a standardized and unified
set of question feature tags for evaluating and analyzing question types.

Referring to the question tags provided by existing KBQA datasets [24,22,5,51],
we categorize the tags that describe the features of complex questions into three
types, including answer type, reasoning type and language type. Table 1 lists
the eight answer type tags and seven reasoning type tags we defined. Generally,



6 Y. Tan et al.

Table 1. The feature-driven question tags defined in this paper.

Answer type Description
MISC The answer to the question is the miscellaneous fact de-

fined by the named entity recognition task.
PER The answer to the question is the name of a person.
LOC The answer to the question is a location.
WHY The answer explains the reasons for the facts mentioned

in the question.
DATE The answer to the question is a date or time.
NUM The answer to the question is a number.
Boolean The answer to the question is yes or no.
ORG The answer to the question is the name of a organization.
UNA The input question is unable to answer.
Reasoning type Description
SetOperation The process of obtaining answers involves set operations.
Filter The answer is obtained through condition filtering.
Counting The process of obtaining an answer involves counting op-

erations.
Comparative The answer needs to be obtained by comparing or sorting

numerical values.
Single-hop Answering questions requires a single-hop Reasoning.
Multi-hop Answering questions requires multi-hop Reasoning.
Star-shape The reasoning graph corresponding to inputting question

is star-shape.

a question contains one answer type tag, one language type tag and several rea-
soning type tags. Figure 2 presents the label distribution of the data collected
in this paper. For an input question, our labeling process is as follows: when the
dataset provides question type tags, we simply match them to our feature tag
list. When no tag is provided, we use an existing bert-base-NER model [44,18]
to identify the type of answer, and use keywords in SPARQL to identify the type
of inference.

3.2 Answer evaluation

The output of traditional KBQA models typically takes two forms: either a
SPARQL query or a precise answer. The evaluation strategy for traditional
KBQA models is based on exact match (EM), which involves comparing the
model’s output with a reference answer or to assess its accuracy. However, with-
out adding additional prompts, LLMs generate text paragraphs containing an-
swers, rather than precise answers. Furthermore, this answer may be a restate-
ment of the reference answer.

Extended Answer Matching To obtain evaluation results on KBQA out-
puts of LLMs resembling exact match, we propose an extended answer matching
approach. This approach consists of three main parts: 1) Parsing LLMs’ output
using constituent trees [14] to extract NP or VP root node phrases as the can-
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Fig. 2. The distribution of feature labels in the collect KB-based CQA datasets

Fig. 3. (a) The GPT family and T5 models show changing error rates on sampled
questions as the threshold varies. (b) LLMs’ QA accuracy (evaluated manually) on
sampled questions varies with the threshold.

didate answer pool. 2) Expanding each reference answer using multilingual alias
lists from Wikidata, including various names and aliases. 3) Using m-bert [18]
to calculate the maximum Cosine similarity between reference and candidate
answers for precise match evaluation, with a fuzzy matching strategy applied
only to non-"NUM, DATE, Boolean" answer types.

Threshold Selection and Sensitivity Analysis As shown in Figure 3 (a),
the analysis of various models reveals that using only EM evaluation for answers
(threshold=1) may result in 2.38%-4.17% (average 3.89%) false negative cases.
To address this issue, we opt for establishing a fuzzy matching process based
on cosine similarity to alleviate the problem. However, selecting an inadequate
threshold may introduce additional false positive issues. Therefore, we followed
the steps below to find an empirical threshold that minimizes the overall false rate
(false pos + false neg) across all models: (1) We randomly sampled 3000 question
samples from the test data of answer types involved in fuzzy matching and
manually verified the correctness of the six LLM output answers shown in Figure
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Fig. 4. Test cases design for INV and DIR.

3(a) (binary labels, correct/incorrect). (2) We calculate the minimum cosine
similarity (the value is 0.38) between the gold answer and its aliases, and used it
as the lower bound for finding the threshold. (3) We observed the changes in false
rates for each model as the threshold increased from 0.38 to 1 and selected the
threshold of 0.78 that minimized the average false rate across models. From the
Figure 3(a), it can be observed that the false rates of each model stabilize around
this value. To evaluate the sensitivity of model performance to the threshold, as
shown in Figure 3(b), we compared the accuracy of each model on the test data
as the threshold varied. The accuracy of each model tended to stabilize when the
threshold was >0.7. Finally, we use 0.78 as the empirical threshold for further
experiments. Sampling tests show that this threshold decreases the average false
rate from 3.89% to 2.71%.

3.3 CheckList testing

Following the idea of CheckList, we also evaluate ChatGPT and other LLMs
with three distinct objectives: (1) to evaluate the ability of LLMs to handle each
feature in KB-based CQA through the MFT; (2) to evaluate the robustness of
LLMs’ ability to handle various features in KB-based CQA scenarios through the
INV; and (3) to evaluate whether the outputs of LLMs meet human expectations
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for modified inputs through the DIR, the controllability. The specific INV and
DIR procedures are presented as follows, and Figure 4 presents the instances:

Minimum Functionality Test In this work, we choose to examine the
performance of LLMs in performing basic reasoning tasks by only including
quesitons that involve a single type of reasoning operation. We then compare
and analyze the performance differences of the models in answering questions
that require performing a single reasoning operation versus those that require
performing multiple reasoning operations.

Invariance Test We designe two methods to generate test cases for INV: the
first method is to randomly introduce spelling errors into the original sentence,
and the second method is to generate a question that is semantically equivalent
(paraphrased) to the original sentence. Subsequently, we evaluate the invariance
of the LLMs by checking the consistency of their correctness in the outputs
generated from three inputs, i.e. the original test sentence, the version of the
question with added spelling errors, and the paraphrased question.

Directional Expectation Test In this study, we designed three modes for
DIR test cases: (1) Replacing phrases related to reasoning operations in ques-
tions, to observe if LLMs’ outputs correspond to our modifications. (2) Adding
prompts with answer types after the original question text to check LLMs’ ability
to control the output answer type. (3) Using multi-round questioning inspired
by CoT, where LLMs consider information related to key nouns before asking
the original question, to observe the effectiveness and sensitivity of CoT prompts
for different question types.

4 Experiments

4.1 Datasets

To highlight the complexity of the testing questions and the breadth of the test-
ing dataset, after careful consideration, we selected six representative English
monolingual KBQA datasets and two multilingual KBQA datasets for evalua-
tion. These datasets include classic datasets such as WebQuestionSP [51], Com-
plexWebQuestions [43], GraphQ [42] and QALD-9 [24], as well as newly proposed
datasets such as KQApro [5], GrailQA [12] and MKQA [22]. Due to the limita-
tions of the OpenAI API, we sampled some datasets, such as MKQA (sampled
by answer type) and GrailQA (only using the test set). The collection size for
each dataset and the scale we collected are summarized in Table 2.

4.2 Comparative models

State-of-the-art models for each dataset We introduce current SOTA mod-
els’ report scores from the KBQA leaderboard [29] for each dataset as traditional
KBQA models in this paper for comparison. This primarily reflects the compari-
son between LLMs and traditional KBQA models in terms of the overall results.

Large-language models of the GPT family ChatGPT is a landmark
model in the GPT family, and we believe that comparing it to its predecessors
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Table 2. The Statistical of collected KB-based CQA datasets, "Col. Size" represents
the size of the dataset we collected in our experiments. "Size" denotes the original size
of the dataset.

Datasets Size Col. Size Lang
KQApro 117,970 106,173 EN
LC-quad2.0 26,975 26,975 EN
WQSP 4737 4,700 EN
CWQ 31,158 31,158 EN
GrailQA 64,331 6,763 EN
GraphQ 4,776 4,776 EN
QALD-9 6,045 6,045 Mul
MKQA 260,000 6,144 Mul
Total Collected 194,782

and subsequent versions is very valuable. By doing so, we can observe and ana-
lyze the technical increments of the GPT family at each stage and the benefits
they bring. In this paper, we compare the GPT family models, which include
GPT-3, GPT-3.5 v2, GPT-3.5 v3, ChatGPT (Their names on OpenAI’s Model
Index document are: text-davinci-001, text-davinci-002, text-davinci-003, gpt-
3.5-turbo-0301) and the newest addition, GPT-4 [27].

Large-language model not belongs to GPT family The LLM we have
chosen is the famous FLAN-T5 (Text-to-Text Transfer Transformer 11B, [7]),
which does not belong to the GPT family. Considering its multilingual question-
answering ability and open-source nature, we have chosen it to participate in the
comparison in this paper. FLAN-T5 is an encoder-decoder transformer language
model that is trained on a filtered variant of CommonCrawl (C4) [36]. The release
date and model size for this model are also based on [36].

4.3 Overall results

The overall results are presented in Table 3. First, ChatGPT outperforms the
current SOTA traditional models on three of the eight test sets, and the sub-
sequently released GPT-4 surpasses on four test sets. By comparing the per-
formance of GPT-4 and SOTA models, we can see that as LLMs represented
by the GPT family, their zero-shot ability is constantly approaching and even
surpassing traditional deep learning and knowledge representation models.

Second, comparing models in the GPT family, the newer models perform
better than the previous ones, as expected. Interestingly, the performance im-
provement of the new GPT models is relatively consistent across all datasets, as
shown in Figure 5(a), where the line shapes of all GPT models are almost identi-
cal. This means that each generation of GPT models retains some commonalities.
Based on the known cases, these commonalities may come from the transformer-
based encoding. We will discuss in detail the impact they have in section 4.5.
In addition, we can observe that the newer versions of the GPT model show
increasingly significant improvements compared to the previous generations.
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Table 3. Overall results of the evaluation. We compare the exact match of ChatGPT
with current SOTA traditional KBQA models (fine-tuned (FT) and zero-shot (ZS)),
GPT family LLMs, and Non-GPT LLM. In GraphQ, QALD-9 and LC-quad2, the
evaluation metric used is F1, while other datasets use Accuracy (Exact match).

.
Datasets KQApro LC-quad2 WQSP CWQ GrailQA GraphQ QALD-9 MKQA

Acc F1 Acc Acc Acc F1 F1 Acc
SOTA(FT) 93.85 [29] 33.10 [31] 73.10 [15] 72.20 [15] 76.31 ‡ 31.8 [13] 67.82 [32] 46.00 [22]
SOTA(ZS) 94.20 [25] - 62.98 [50] - - - - -
FLAN-T5 37.27 30.14 59.87 46.69 29.02 32.27 30.17 20.17
GPT-3 38.28 33.04 67.68 51.77 27.58 38.32 38.54 26.97
GPT-3.5v2 38.01 33.77 72.34 53.96 30.50 40.85 44.96 30.14
GPT-3.5v3 40.35 39.04 79.60 57.54 35.43 47.95 46.19 39.05
ChatGPT 47.93 42.76 83.70 64.02 46.77 53.10 45.71 44.30
GPT-4 57.20 54.95 90.45 71.00 51.40 63.20 57.20 59.20

Table 4. Comparison of LLMs on multilingual test sets.

Languages FLAN-T5 GPT-3 GPT-3.5v2 GPT-3.5v3 ChatGPT GPT-4
en 30.29 57.53 56.99 64.16 66.49 66.09
nl 20.75 50.47 54.58 60.56 65.05 69.72
de 22.40 50.54 54.48 57.17 62.54 73.91
es 21.68 48.22 55.70 58.50 61.87 57.69
fr 26.16 49.46 55.02 57.89 62.19 62.00
it 24.19 47.67 52.33 58.06 58.96 73.91
ro 22.28 44.38 50.94 54.12 59.55 63.41

pt br 15.38 38.46 38.46 42.31 50.00 66.67
pt 20.58 37.70 44.26 50.27 52.64 52.25
ru 7.29 20.58 29.69 21.68 32.24 49.58

hi in 3.61 9.93 19.13 13.54 21.48 25.00
fa 2.45 6.59 21.09 11.49 22.03 31.71

zh cn 3.65 17.45 22.40 24.87 33.46 44.62

Third, as shown in Figure 5(a), although FLAN-T5’s overall performance is
weaker than that of the GPT family, its line shape is quite similar to that of
the GPT family. This further supports our inference that the transformer-based
architecture leads to commonalities in the abilities of current LLMs.

4.4 Multilingual KBQA results

Based on the results from MKQA and QALD-9, we further present the perfor-
mance of LLMs on multilingual QA in Table 4. Despite the overall trend showing
improvement in the model’s ability to answer questions in different languages as
the GPT family continues to iterate, we observe that GPT-4 has not surpassed
ChatGPT in the four languages. This suggests that the evolution of GPT’s mul-
tilingual capabilities may be starting to slow down. Figure 5(b) shows the line
‡ https://dki-lab.github.io/GrailQA/
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Fig. 5. (a) is the line chart based on Table 3, showing the EM scores of each model on
different datasets. (b) corresponds to Table 5, with lines representing the EM scores
of each model in different languages. (c) and (d) correspond to Table 4, reflecting the
trend of EM scores of each model on different types of questions.

chart of the EM scores of the models in each language. We can find that the
shapes of the lines for GPT-3 and ChatGPT are very similar, while there is a
significant change in the shape of the line for GPT-4. We believe that the main
reason for this change is due to the introduction of multimodal data in GPT-4,
which plays a positive role in mapping between some languages.

4.5 Feature tags based results

The results in Table 5 show the performance of ChatGPT and other LLMs
when answering different types of questions. As such, traditional models are
not compared in this section. Overall, models from the GPT family are better
at answering questions with boolean (yes/no) answers, questions about organi-
zations and locations, as well as those involving set operations and numerical
comparisons. However, they do not perform well when answering questions that
require precise dates or involve numerical calculations. From the performance
of models in the GPT family and Flan-T5, it can be found that Flan-T5 per-
forms worse in all cases except for questions with boolean answer types. This is
consistent with the conclusion of [21]: The performance of knowledge-intensive
tasks is closely related to the size of the model. For comparisons within the GPT
family of models, following the iteration process of the GPT model summarized
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Table 5. Exact Match comparison based on Answer Types (AnsType) and Reasoning
Types (RsgType)

MF FLAN-T5 GPT-3 GPT-3.5v2 GPT-3.5v3 ChatGPT GPT-4
AnsType

MISC 35.67 40.79 42.35 46.42 51.02 60.73
PER 30.84 37.53 41.36 45.10 48.65 65.71
LOC 52.91 56.92 58.93 62.71 63.55 73.98
ORG 41.62 50.01 50.58 54.62 61.18 69.20
DATE 24.81 37.07 36.15 42.54 36.92 41.57

Boolean 62.43 39.96 42.56 53.23 62.92 72.28
NUM 16.08 19.66 21.01 20.31 30.70 44.59
WHY 27.69 32.31 27.69 49.23 40.00 47.83
UNA - - - - - -

RsgType
SetOperation 60.11 60.12 62.03 66.86 70.00 79.70

Filtering 45.01 49.06 51.24 55.43 63.40 68.40
Counting 10.68 17.56 20.83 20.83 28.41 42.50

Comparison 72.13 72.44 74.00 80.00 74.74 82.79
Single-hop 41.00 38.72 42.54 49.22 54.00 74.14
Multi-hop 35.68 41.09 42.98 47.06 44.88 57.20
Star-shape 37.23 42.28 43.96 48.17 47.43 60.91

in [11], we also observe some positive effects of certain technical introductions on
the model, including: (1) [11] point out that GPT-3.5 v3 has better in-context
learning abilities, while ChatGPT sacrifices these abilities in order to model di-
alogue history. This may explain why GPT-3.5 v3 performs better in answering
multi-hop and star-shaped questions that require distinguishing entity mentions
through context. (2) ChatGPT’s dialogue learning helps it better answer short
questions (Single-hop). (3) The GPT-3.5 v2, obtained through language model
and code training followed by supervised instruction tuning, but its overall ca-
pabilities do not appear to have significantly improved compared to GPT-3. The
possible reason could be that alignment harms performance, and the alignment
tax offsets the increase in zero-shot ability obtained through training [28,21]. (4)
One possible reason why the successor models outperform GPT3.5 V2 in most
aspects is that the complex reasoning ability acquired through training on code,
which did not manifest prominently in GPT3.5 V2, but were unlocked after the
introduction of instruction tuning with RLHF [9,28].

Figures 5(c) and (d) respectively show line chart of the EM scores formed by
each model in answering questions of different answer and reasoning types. The
two Figures are consistent with what we observed in the Overall results, that is,
various models of the GPT family and FLAN-T5 have similar line shapes. In ad-
dition, we also find that the performance of the new GPT models has improved
significantly in some specific types of questions, such as Boolean-type (Chat-
GPT, GPT-4) and WHY-type (GPT-3.5 v3). However, in some other types of
questions, there is no significant improvement for the multi-generation models
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of GPT, such as Num-type and Counting-type. This indicates that there is still
a significant room for improvement for LLMs, and the iteration is far from over.
Another interesting finding is that FLAN-T5 performs similarly to ChatGPT in
answering boolean questions, but performs worse than the GPT family in other
types of answers. Due to the difference in their training data, we cannot accu-
rately determine in the current evaluation whether the reason for this situation
is the difference in training data or whether certain training strategies used by
the GPT family have a negative impact on specific types of questions.

Table 6. MFT results of ChatGPT

SetOperation Filtering Counting Comparison Single-hop Multi-hop Star-shape
Single Reasoning 60.22 51.39 24.16 31.48 44.07 48.27 50.75
Multiple Reasoning 70.00 63.40 28.41 74.74 54.00 44.88 47.43

4.6 CheckList results

MFT results In the MFT tests, we only evaluate questions that contain a single
type of reasoning or multiple reasoning labels of the same type (such as SetOper-
ation+Comparison and SetOperation+Filtering). Based on the results of MFT,
we compared the performance of ChatGPT in answering single and multiple rea-
soning questions. Table 6 shows the following findings. (1) Except for multi-hop
and star type questions, ChatGPT performs better in executing multiple reason-
ing than in performing single reasoning in answering questions involving other
types of reasoning operations. (2) ChatGPT is not good at answering counting
questions despite the improvements generated by multiple reasoning.

INV results Table 7 presents the stability of LLMs from the GPT family
across three runs on three different test cases. As a reference, [26] noted that
the stability of traditional KBQA models is 100. The results in Table 7 are re-
ported using the following symbols: ’CCC’ indicates that all answers to the three
inquiries are correct, while ’WWW’ indicates that none of the three inquiries re-
ceived correct answers or the model did not return any useful answers. Only
when the correctness of the three queries is consistent, the model’s performance
on the problem is considered stable. As shown in Tables 7, the overall stability of
the GPT models has improved from GPT-3 to GPT-4, and GPT-4 has reached
a stability rate of 91.70, which is very close to that of traditional KBQA mod-
els. The stability rate of ChatGPT is slightly lower than that of GPT-3.5, and
we infer that this is due to the fact that the ChatGPT model focuses more on
conversation training, resulting in higher instability (randomness) in the output.

DIR results As mentioned in Figure 4, we designed three DIR modes to
examine the controllability of LLMs from the GPT family. In the first mode,
we manually observe whether the SPARQL statements output by the model
contain the expected keywords, and calculate the failure rate of the model’s
expected reasoning operations. Since GPT-3.5 v2 and its earlier versions did
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Table 7. INV results of GPT family

LLM CCC CCW CWC CWW WCC WCW WWC WWW Stability Rate
GPT-3 434 64 59 52 42 43 73 666 76.76
GPT-3.5 v2 495 44 65 42 43 30 58 656 80.30
GPT-3.5 v3 604 46 43 49 34 35 49 583 82.83
ChatGPT 588 49 72 68 52 27 32 545 79.06
GPT-4 798 0 0 65 54 0 0 516 91.70

Table 8. DIR results for RsgType, the score represents the percentage of expected
output produced by the LLMs.

SetOperation Filtering Counting Comparison Overall
GPT-3.5 v3 45% 75% 65% 65% 62.5%
ChatGPT 75% 85% 70% 65% 73.75%
GPT-4 65% 90% 70% 60% 71.25%

not undergo code learning, it is difficult for them to generate correct SPARQL
queries. Therefore, in this test, we compare the GPT-3.5 v3, ChatGPT, and
GPT-4. As shown in Table 8, the scores of around 73% indicate that even the
latest GPT model still has a high degree of randomness in performing reasoning
operations, which will affect its applicable scenarios.

In the second mode, we provide prompts to the model’s input indicating the
answer type and observe the change in the EM score. In Table 9, red values
indicate that adding prompts increases the EM score, while blue values indicate
negative effects. For most models, prompts have a relatively stable positive effect
on Boolean and NUM type questions, while the answers to MISC type questions
are mostly negatively affected. In addition, in new models such as ChatGPT
and GPT-4, the effect of answer type prompts is much worse than in GPT-3.5
and earlier models.This suggests that different models have different internal
knowledge and understanding of the same input text, and the effectiveness and
helpfulness of the same prompt vary among different models. More powerful
models are more sensitive to the content of prompts because of their powerful
natural language understanding ability. It may be difficult to design simple and
universally effective prompts that work well across all models.

In the third mode, we guide the model step by step through a naive CoT-
guided process to first provide the crucial information required to answer the
question, and then answer the original question. Table 10 shows the difference
in EM scores of the GPT model’s answers before and after using CoT-guided
process for each type of questions. We can observe that positive impact brought
by CoT to GPT-4 is greater than that of other models, and the improvement
of CoT on the model’s ability to answer NUM-type questions is significant and
stable. In terms of reasoning types, CoT improves the ability of all models in
set operations, conditional filtering, and counting, but it doesn’t help much with
multi-hop and star-shape questions. Specifically, the most significant improve-
ment introduced by CoT for the GPT family of models is a score increase of over
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Table 9. DIR results for AnsType prompting

MISC PER LOC ORG DATE Boolean NUM WHY
GPT-3 +1.43 0 +5.71 +4.29 +4.29 +15.71 +17.14 0
GPT-3.5 v2 -4.28 +2.85 +7.14 +14.28 +2.86 -8.57 +14.28 +12.13
GPT-3.5 v3 -12.86 +10.00 +18.57 -7.14 +4.71 +17.14 +22.85 +9.09
ChatGPT +6.78 -3.64 -1.72 -5.35 -8.58 +4.28 +7.15 -3.03
GPT-4 -4.29 -2.86 +11.43 +5.71 0 +7.14 +4.29 -6.06

Table 10. DIR results for CoT prompting

MISC PER LOC ORG DATE Boolean NUM WHY
GPT-3 -1.40 -2.00 -2.67 +2.73 -3.77 +3.36 +35.66 +6.06
GPT-3.5 v2 -0.35 -5.33 +1.78 -3.64 +0.76 -5.04 +32.95 0
GPT-3.5 v3 0 -2.00 -1.33 -1.82 -1.51 -2.10 +34.12 0
ChatGPT -1.75 -4.66 +0.89 -3.63 -1.50 +3.36 +30.62 +6.06
GPT-4 -3.00 +11.11 +2.22 +3.3 -2.71 0 +20.00 +2.62

SetOperation Filtering Counting Comparison Multi-hop Star-shape
GPT-3 +10.79 +10.43 +35.66 +1.35 -1.60 -1.69
GPT-3.5 v2 +4.86 +5.46 +38.54 -2.26 -1.18 -0.85
GPT-3.5 v3 +6.34 +8.18 +38.99 -1.13 -1.61 -1.26
ChatGPT +7.82 +9.47 +35.78 +0.45 -1.47 -1.41
GPT-4 +2.05 +0.93 +11.11 -1.88 +2.82 +2.68

30.00 for answer types that are numerical(NUM). This result strongly supports
the importance of CoT for using LLMs to solve numerical-related questions [20].

5 Conclusion

In this paper, we extensively tested the ability of ChatGPT and other LLMs
to answer questions on KB-based CQA datasets using their own knowledge.
The experimental results showed that the question-answering performance and
reliability of the GPT model have been continuously improving with version
iterations, approaching that of traditional models. CheckList testing showed that
current LLMs still have a lot of room for improvement in some reasoning abilities,
and CoT-inspired prompts can improve the performance of the original model
on certain types of questions. Consequently, this evaluation serves as a valuable
reference for future research in the relevant community. In future work, we need
to further expand on the following two points: Firstly, conduct tests in various
domains to validate which conclusions obtained from open-domain KBQA are
universal and which are domain-specific. Secondly, perform tests on various types
of models. With ongoing LLM research, besides the GPT family, many new large-
scale open-source models have been proposed. It requires further exploration and
summarization to determine if they possess better mechanisms for self-knowledge
organization or stronger capabilities to accept human prompts and find answers.
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