Skip to main content

FeaBI: A Feature Selection-Based Framework for Interpreting KG Embeddings

  • Conference paper
  • First Online:
The Semantic Web – ISWC 2023 (ISWC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14265))

Included in the following conference series:

  • 1401 Accesses

Abstract

Knowledge Graph (KG) embedding methods represent KG entities as vectors in an embedding space, and they have been successfully used for a variety of tasks, including link prediction and entity classification. While some of the recent embedding methods outperform traditional approaches on these tasks, their main drawback is the lack of interpretability. Several methods for explaining predictions made by KG embeddings have been proposed in the literature. However, none of them targeted the problem of constructing model explanations for embeddings, i.e., interpretable KG representations that behave similarly to embeddings on certain tasks. We address this problem and propose a novel method for generating interpretable vectors for entity embeddings. To achieve this, we employ embedded feature selection techniques to extract from the KG, on which the embedding model was trained, propositional features that are important for a given KG embedding model. Our approach sheds light on the information in the KG captured by embeddings and provides valuable insights that can be used to further enhance the embedding models. Additionally, we demonstrate the usefulness of our method for explaining embedding-based entity similarity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://shorturl.at/lGV49.

References

  1. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: ISWC/ASWC, pp. 722–735 (2007)

    Google Scholar 

  2. Baader, F., Calvanese, D., McGuinness, D., Patel-Schneider, P., Nardi, D., et al.: The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press (2003)

    Google Scholar 

  3. Betz, P., Meilicke, C., Stuckenschmidt, H.: Adversarial explanations for knowledge graph embeddings. In: Raedt, L.D. (ed.) IJCAI 2022, pp. 2820–2826 (2022)

    Google Scholar 

  4. Bhatt, U., Xiang, A., Shubham Sharma, t.: Explainable machine learning in deployment. In: FAT* 2020, pp. 648–657 (2020)

    Google Scholar 

  5. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: SIGMOD 2008, pp. 1247–1250 (2008)

    Google Scholar 

  6. Bordes, A., Usunier, N., García-Durán, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: NeurIPs, pp. 2787–2795 (2013)

    Google Scholar 

  7. Chandrahas, Sengupta, T., Pragadeesh, C., Talukdar, P.P.: Inducing interpretability in knowledge graph embeddings. In: Bhattacharyya, P., Sharma, D.M., Sangal, R. (eds.) ICON 2020, pp. 70–75 (2020)

    Google Scholar 

  8. Cheng, W., Kasneci, G., Graepel, T., Stern, D.H., Herbrich, R.: Automated feature generation from structured knowledge. In: CIKM, 2011, pp. 1395–1404 (2011)

    Google Scholar 

  9. Costabello, L., et al.: On explainable AI: from theory to motivation, applications and limitations. In: A Tutorial at AAAI 2019 (2019)

    Google Scholar 

  10. Cover, T.M., Hart, P.E.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)

    Article  MATH  Google Scholar 

  11. Galárraga, L.: Effects of locality and rule language on explanations for knowledge graph embeddings. CoRR abs/2302.06967 (2023)

    Google Scholar 

  12. Galkin, M., Denis, E.G., Wu, J., Hamilton, W.L.: NodePiece: compositional and parameter-efficient representations of large knowledge graphs. In: ICLR 2022 (2022)

    Google Scholar 

  13. Gusmão, A.C., Correia, A.H.C., Bona, G.D., Cozman, F.G.: Interpreting embedding models of knowledge bases: a pedagogical approach. CoRR abs/1806.09504 (2018)

    Google Scholar 

  14. Halliwell, N., Gandon, F., Lécué, F.: User scored evaluation of non-unique explanations for relational graph convolutional network link prediction on knowledge graphs. In: K-CAP, pp. 57–64 (2021)

    Google Scholar 

  15. Haykin, S.: Neural Networks: A Comprehensive Foundation (1994)

    Google Scholar 

  16. Ho, V.T., Stepanova, D., Gad-Elrab, M.H., Kharlamov, E., Weikum, G.: Rule Learning from Knowledge Graphs Guided by Embedding Models. In: Vrandečić, D., Bontcheva, K., Suárez-Figueroa, M.C., Presutti, V., Celino, I., Sabou, M., Kaffee, L.-A., Simperl, E. (eds.) ISWC 2018. LNCS, vol. 11136, pp. 72–90. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00671-6_5

    Chapter  Google Scholar 

  17. Jain, N., Kalo, J.C., Balke, W.T., Krestel, R.: Do embeddings actually capture knowledge graph semantics? In: ESWC (2021)

    Google Scholar 

  18. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR 2017 (2017)

    Google Scholar 

  19. Krogel, M., Rawles, S.A., Zelezný, F., Flach, P.A., Lavrac, N., Wrobel, S.: In: ILP 2003, vol. 2835, pp. 197–214 (2003)

    Google Scholar 

  20. Lajus, J., Galárraga, L., Suchanek, F.: Fast and exact rule mining with AMIE 3. In: Harth, A., et al. (eds.) ESWC 2020. LNCS, vol. 12123, pp. 36–52. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49461-2_3

    Chapter  Google Scholar 

  21. Lavrač, N., Škrlj, B., Robnik-Šikonja, M.: Propositionalization and embeddings: two sides of the same coin. Mach. Learn. 109(7), 1465–1507 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lawler, I., Sullivan, E.: Model explanation versus model-induced explanation. Found. Sci. 26, 1049–1074 (2021)

    Article  MathSciNet  Google Scholar 

  23. Meilicke, C., Chekol, M.W., Ruffinelli, D., Stuckenschmidt, H.: Anytime bottom-up rule learning for knowledge graph completion. In: IJCAI 2019, pp. 3137–3143 (2019)

    Google Scholar 

  24. Mežnar, S., Lavrač, N., Škrlj, B.: Snore: scalable unsupervised learning of symbolic node representations. IEEE Access 8, 212568–212588 (2020)

    Article  Google Scholar 

  25. Nandwani, Y., Gupta, A., Agrawal, A., Chauhan, M.S., Singla, P., Mausam: OXKBC: outcome explanation for factorization based knowledge base completion. In: AKBC 2020 (2020)

    Google Scholar 

  26. Nguyen, D.Q., Nguyen, T.D., Nguyen, D.Q., Phung, D.Q.: A novel embedding model for knowledge base completion based on convolutional neural network. In: NAACL (2018)

    Google Scholar 

  27. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  28. Pellegrino, M.A., Altabba, A., Garofalo, M., Ristoski, P., Cochez, M.: GEval: a modular and extensible evaluation framework for graph embedding techniques. In: Harth, A., et al. (eds.) ESWC 2020. LNCS, vol. 12123, pp. 565–582. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49461-2_33

    Chapter  Google Scholar 

  29. Portisch, J., Heist, N., Paulheim, H.: Knowledge graph embedding for data mining vs. knowledge graph embedding for link prediction - two sides of the same coin? Semant. Web 13(3), 399–422 (2022)

    Article  Google Scholar 

  30. Ristoski, P., Paulheim, H.: A comparison of propositionalization strategies for creating features from linked open data. In: Tiddi, I., d’Aquin, M., Jay, N. (eds.) LOD Workshop at ECML PKDD 2014 (2014)

    Google Scholar 

  31. Ristoski, P., Rosati, J., Noia, T.D., Leone, R.D., Paulheim, H.: RDF2Vec: RDF graph embeddings and their applications. Semant. Web 10(4), 721–752 (2019)

    Article  Google Scholar 

  32. Rossi, A., Firmani, D., Merialdo, P., Teofili, T.: Explaining link prediction systems based on knowledge graph embeddings. In: SIGMOD 2022, pp. 2062–2075 (2022)

    Google Scholar 

  33. Segal, M., Xiao, Y.: Multivariate random forests. WIREs Data Min. Knowl. Disc. 1, 80–87 (2011)

    Article  Google Scholar 

  34. Shi, B., Weninger, T.: Open-world knowledge graph completion. ArXiv abs/1711.03438 (2018)

    Google Scholar 

  35. Steenwinckel, B., Vandewiele, G., Weyns, M., Agozzino, T., Turck, F.D., Ongenae, F.: INK: knowledge graph embeddings for node classification. Data Min. Knowl. Discov. 36(2), 620–667 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  36. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: A core of semantic knowledge. In: WWW 2007 (2007)

    Google Scholar 

  37. Tang, J., et al.: Computational advances of tumor marker selection and sample classification in cancer proteomics. Comput. Struct. Biotechnol. J. 18, 2012–2025 (2020)

    Article  Google Scholar 

  38. Toutanova, K., Chen, D.: Observed versus latent features for knowledge base and text inference. In: Proceedings of the 3rd Workshop on Continuous Vector Space Models and their Compositionality (2015)

    Google Scholar 

  39. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: ICML, pp. 2071–2080 (2016)

    Google Scholar 

  40. Vashishth, S., Sanyal, S., Nitin, V., Talukdar, P.P.: Composition-based multi-relational graph convolutional networks. In: ICLR 2020 (2020)

    Google Scholar 

  41. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743 (2017)

    Article  Google Scholar 

  42. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? CoRR abs/1810.00826 (2018)

    Google Scholar 

  43. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: ICLR (2015)

    Google Scholar 

  44. Yogatama, D., Gillick, D., Lazic, N.: Embedding methods for fine grained entity type classification. In: ACL 2015, pp. 291–296 (2015)

    Google Scholar 

  45. Zhang, W., et al.: Iteratively learning embeddings and rules for knowledge graph reasoning. In: WWW 2019, pp. 2366–2377 (2019)

    Google Scholar 

  46. Zhao, Y., Zhang, A., Xie, R., Liu, K., Wang, X.: Connecting embeddings for knowledge graph entity typing. In: Jurafsky, D., Chai, J., Schluter, N., Tetreault, J.R. (eds.) ACL 2020, pp. 6419–6428 (2020)

    Google Scholar 

  47. Zhu, Z., Zhang, Z., Xhonneux, L.A.C., Tang, J.: Neural bellman-ford networks: a general graph neural network framework for link prediction. In: NeurIPS 2021, pp. 29476–29490 (2021)

    Google Scholar 

Download references

Acknowledgements

We thank anonymous reviews for their useful feedback, and Dr. Blaž Škrlj for helpful comments on the initial version of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youmna Ismaeil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ismaeil, Y., Stepanova, D., Tran, TK., Blockeel, H. (2023). FeaBI: A Feature Selection-Based Framework for Interpreting KG Embeddings. In: Payne, T.R., et al. The Semantic Web – ISWC 2023. ISWC 2023. Lecture Notes in Computer Science, vol 14265. Springer, Cham. https://doi.org/10.1007/978-3-031-47240-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47240-4_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47239-8

  • Online ISBN: 978-3-031-47240-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics