Skip to main content

Prototyping of a Sealing Cap for a Hybrid Unmanned Aerial Underwater Vehicle with Onboard Instrumentation

  • Conference paper
  • First Online:
Synergetic Cooperation Between Robots and Humans (CLAWAR 2023)

Abstract

Special Session: Hybrid and Convertible Unmanned Aerial Vehicles.-This paper describes the development of a sealing capsule for attaching the instrumentation required for a Hybrid Unmanned Aerial Underwater Vehicle (HUAUV) to perform tasks autonomously. The designed capsule aims to protect the electronic components in the underwater environment ensuring the integrity of the equipment. This work discusses the challenges involved in designing and building the sealing capsule and the tests performed to validate its effectiveness. The results demonstrate that the sealing was able to successfully protect the instrumentation without impairing its operation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Drews, P.L., Neto, A.A., Campos, M.F.: Hybrid unmanned aerial underwater vehicle: Modeling and simulation. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4637–4642. IEEE (2014)

    Google Scholar 

  2. Pedroso, A.A., da Silva, A.C., Pinheiro, P.M., Drews, P.L.J.: Prototyping and construction of a hybrid unmanned aerial underwater vehicles. In: 2022 Latin American Robotics Symposium (LARS), 2022 Brazilian Symposium on Robotics (SBR), and. Workshop on Robotics in Education (WRE), vol. 2022, pp. 61–66 (2022)

    Google Scholar 

  3. Ma, Z., Chen, D., Li, G., Jing, X., Xiao, S.: Configuration design and trans-media control status of the hybrid aerial underwater vehicles. Appl. Sci. 12(2), 765 (2022)

    Google Scholar 

  4. Horn, A.C., Pinheiro, P.M., Silva, C.B., Neto, A.A., Drews-Jr, P.L.: A study on configuration of propellers for multirotor-like hybrid aerial-aquatic vehicles. In: 2019 19th International Conference on Advanced Robotics (ICAR), pp. 173–178. IEEE (2019)

    Google Scholar 

  5. Horn, A.C., Pinheiro, P.M., Grando, R.B., da Silva, C.B., Neto, A.A., Drews, P.L.: A novel concept for hybrid unmanned aerial underwater vehicles focused on aquatic performance. In: Latin American Robotics Symposium (LARS), 2020 Brazilian Symposium on Robotics (SBR) and 2020 Workshop on Robotics in Education (WRE), vol. 2020, pp. 1–6. IEEE (2020)

    Google Scholar 

  6. Maia, M.M., Soni, P., Diez, F.J.: Demonstration of an aerial and submersible vehicle capable of flight and underwater navigation with seamless air-water transition (2015). arXiv:1507.01932

  7. Maia, M.M., Mercado, D.A., Diez, F.J.: Design and implementation of multirotor aerial-underwater vehicles with experimental results. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 961–966. IEEE (2017)

    Google Scholar 

  8. Alzu’bi, H., Mansour, I., Rawashdeh, O.: Loon copter: implementation of a hybrid unmanned aquatic-aerial quadcopter with active buoyancy control. J. field Robot. 35(5), 764–778 (2018)

    Article  Google Scholar 

  9. Chen, Y., Liu, Y., Meng, Y., Yu, S., Zhuang, Y.: System modeling and simulation of an unmanned aerial underwater vehicle. J. Marine Sci. Eng. 7(12), 444 (2019)

    Google Scholar 

  10. Tan, Y.H., Chen, B.M.: Design of a morphable multirotor aerial-aquatic vehicle. In: OCEANS,: MTS/IEEE SEATTLE, vol. 2018, pp. 1–8. IEEE

    Google Scholar 

  11. Chen, G., Liu, A., Hu, J., Feng, J., Ma, Z.: Attitude and altitude control of unmanned aerial-underwater vehicle based on incremental nonlinear dynamic inversion. IEEE Access 8, 156 129–156 138 (2020)

    Google Scholar 

  12. Pinheiro, P.M., Neto, A.A., Grando, R.B., d. Silva, C.B., Aoki, V.M., Cardoso, D.S., Horn, A.C., Drews Jr, P.L.: Trajectory planning for hybrid unmanned aerial underwater vehicles with smooth media transition. J. Intell. Robot. Syst. 104(3), 46 (2022)

    Google Scholar 

  13. Grando, R.B., de Jesus, J.C., Kich, V.A., Kolling, A.H., Bortoluzzi, N.P., Pinheiro, P.M., Neto, A.A., Drews, P.L.: Deep reinforcement learning for mapless navigation of a hybrid aerial underwater vehicle with medium transition. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 1088–1094. IEEE (2021)

    Google Scholar 

  14. Grando, R.B., de Jesus, J.C., Kich, V.A., Kolling, A.H., Pinheiro, P.M., Guerra, R.S., Drews, P.L.: Mapless navigation of a hybrid aerial underwater vehicle with deep reinforcement learning through environmental generalization. In: Latin American Robotics Symposium (LARS), 2022 Brazilian Symposium on Robotics (SBR), and 2022 Workshop on Robotics in Education (WRE), vol. 2022, pp. 1–6. IEEE (2022)

    Google Scholar 

  15. de Jesus, J.C., Kich, V.A., Kolling, A.H., Grando, R.B., Guerra, R.S., Drews, P.L.: Depth-cuprl: depth-imaged contrastive unsupervised prioritized representations in reinforcement learning for mapless navigation of unmanned aerial vehicles. In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 2022, pp. 10 579–10 586. IEEE (2022)

    Google Scholar 

  16. Grando, R.B., Pinheiro, P.M., Bortoluzzi, N.P., da Silva, C.B., Zauk, O.F., Piñeiro, M.O., Aoki, V.M., Kelbouscas, A.L., Lima, Y.B., Drews, P.L. et al.: Visual-based autonomous unmanned aerial vehicle for inspection in indoor environments. In: Latin American Robotics Symposium (LARS), 2020 Brazilian Symposium on Robotics (SBR) and 2020 Workshop on Robotics in Education (WRE), vol 2020, pp. 1–6. IEEE (2020)

    Google Scholar 

  17. Hu, J., Zhang, H., Li, Z., Zhao, C., Xu, Z., Pan, Q.: Object traversing by monocular UAV in outdoor environment. Asian J. Control 23(6), 2766–2775 (2021)

    Article  Google Scholar 

  18. Lu, D., Xiong, C., Zeng, Z., Lian, L.: Adaptive dynamic surface control for a hybrid aerial underwater vehicle with parametric dynamics and uncertainties. IEEE J. Ocean. Eng. (2019)

    Google Scholar 

  19. Cook, D., Vardy, A., Lewis, R.: A survey of auv and robot simulators for multi-vehicle operations. In: IEEE/OES Autonomous Underwater Vehicles (AUV), vol. 2014, pp. 1–8. IEEE (2014)

    Google Scholar 

  20. Azulrov2 (2022) Blue Robotics. www.bluerobotics.com/store/rov/bluerov2/

  21. Suming, Q., Weicheng, C.: An overview on aquatic unmanned aerial vehicles. Ann. Rev. Res. 5(3), 555663 (2019)

    Google Scholar 

  22. Miranda Pinheiro, P., Dias de Oliveira Evald, P.J., Bedin Grando, R., Alves Neto, A., Jorge Drews-Jr, P.L.: Hybrid unmanned aerial underwater vehicles: a survey on concepts and technologies. SSRN 4424715 (2023)

    Google Scholar 

  23. Using the vacuum plug and hand pump (2022) Blue Robotics. www.bluerobotics.com/learn/using-the-vacuum-test-plug/

  24. Wang, C., Zhang, Q., Lin, S., Li, W., Wang, X., Bai, Y., Tian, Q.: Research and experiment of an underwater stereo vision system. In: OCEANS 2019-Marseille, pp. 1–5. IEEE (2019)

    Google Scholar 

  25. Duecker, D.A., Hansen, T., Kreuzer, E.: Rgb-d camera-based navigation for autonomous underwater inspection using low-cost micro AUVS. In: IEEE/OES Autonomous Underwater Vehicles Symposium (AUV), vol. 2020, pp. 1–7. IEEE (2020)

    Google Scholar 

Download references

Acknowledgement

This study was financed by the Human Resource Program of The Brazilian National Agency for Petroleum, Natural Gas, and Biofuels - PRH-ANP, supported by resources from oil companies considering the contract clause n 50/2015 of R, D &I of the ANP, CAPES, and CNPq. Moreover, we would like to thank to the Technological University of Uruguay (UTEC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adir A. Pedroso-Jr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pedroso-Jr, A.A. et al. (2024). Prototyping of a Sealing Cap for a Hybrid Unmanned Aerial Underwater Vehicle with Onboard Instrumentation. In: Youssef, E.S.E., Tokhi, M.O., Silva, M.F., Rincon, L.M. (eds) Synergetic Cooperation Between Robots and Humans. CLAWAR 2023. Lecture Notes in Networks and Systems, vol 810. Springer, Cham. https://doi.org/10.1007/978-3-031-47269-5_19

Download citation

Publish with us

Policies and ethics