Abstract
The primary purpose of climber robots is to undertake tasks that may be hazardous for humans working at height and in hard-to-reach spaces. They improve safety as well as enhance task efficiency and decrease labor costs. Climber robots have been extensively used for activities such as bridge inspection, high-rise building cleaning, fruit picking, high-altitude rescue and military reconnaissance. This paper reviews a list of 51 articles published in the field of mobile robotics and climbing robots in the last five years, mainly related to onshore and offshore oil and gas applications. From the generation of this list, a trend analysis has been performed, where the observed result allowed the perception that the reduction of human exposure to risk (HRE), as well as the ESG principles direct and motivate robotic implementations in this area.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Shukla, A., Karki, H.: Application of robotics in onshore oil and gas industry—a review Part I. Robot. Auton. Syst. 75(Part B), 490–507 (2016). https://doi.org/10.1016/j.robot.2015.09.012
Gihleb, R., Giuntella, O., Stella, L., Wang, T.: Industrial robots, workers’ safety, and helth. Labour Econ. 78, 102205. https://doi.org/10.1016/j.labeco.2022.102205
Elia, L., Alonso, R., Canada, J.: Hephaestus-highly automated physical achievements and performances using cable robots unique systems. Proceeding. https://doi.org/10.3390/proceedings2150558
Ibrahimov, B., Namazov, M.: Robotics in petroleum and safety requirements forcing open innovation to be embraced. IFAC Papers Online 51–30, 688–692 (2018). https://doi.org/10.1016/j.ifacol.2018.11.215
Bengle, M., Pfeiffer, K., Graf, B., Bulbeck, A., Verl, A.: Mobile robots for offshore inspection and manipulation. In: IEEE Conference on Intelligent Robots and System, pp. 3317–3322 (2009). https://doi.org/10.1109/IROS.2009.5353885
Skourup, C., Pretlove, J.: Remote inspection and intervention-remote robotics at work in harsh oil and gas environments, 50–55 (2012)
Parween, R., Tan, Y.W., Elara, M.R.: Design and development of a vertical propagation robot for inspection of flat and curved surfaces. IEEE Access 9 (2021). https://doi.org/10.1109/ACCESS.2020.3039014
Chen, X., Wu, Y., Hao, H., Shi, H., Huang, H.: Tracked wall-climbing robot for calibration of large vertical metal tanks. Appl. Sci. 9, 2671 (2019). https://doi.org/10.3390/app9132671
Le Vu, A., Veerajagadheswar, P., Kyaw, P., Muthugala, M., Elara, M., Kuma, M., Nhan, N.: Towards optimal hydro-blasting in reconfigurable climbing system for corroded ship hull cleaning and maintenance. Expert Syst. Appl. 170, 114519 (2021). https://doi.org/10.1016/j.eswa.2020.114519
Kermorgant, O.: A magnetic climbing robot to perform autonomous welding in the shipbuilding industry. Robot. Comput. Integr. Manuf. 53, 178–186 (2018). https://doi.org/10.1016/j.rcim.2018.04.008
Gao, F., Fan, J., Zhang, L., Jiang, J., He, S.: Magnetic crawler climbing detection robot basing on metal magnetic memory testing technology. Robot. Auton. Syst. 125, 103439 (2020). https://doi.org/10.1016/j.robot.2020.103439
Hu, J., Han, X., Tao, Y., Feng, S.: A magnetic crawler wall-climbing robot with capacity of high payload on the convex surface. Robot. Auton. Syst. 148, 103907 (2022). https://doi.org/10.1016/j.robot.2021.103907
Park, C., Bae, J., Ryu, S., Lee, J., Seo, T.: R-track: separable modular climbing robot design for wall-to-wall transition. In: International Conference on Intelligent Robots and Systems (IROS). Las Vegas (2020). https://doi.org/10.1109/LRA.2020.3015170
Kahnamouei, J., Moallem, M.: A comprehensive review of in-pipe robots. Ocean Eng. 277, 114260 (2023). https://doi.org/10.1016/j.oceaneng.2023.114260
Miao, X., Zhao, H., Song, F., Ma, Y.: Dynamic characteristics and motion control of pipeline robot under deformation excitation in subsea pipeline. Ocean Eng. 266, 112790 (2022). https://doi.org/10.1016/j.oceaneng.2022.112790
Li, H., Li, R., Zhang, J., Zhang, P.: Development of a pipeline inspection robot for the standard oil pipeline of China national petroleum corporation. Appl. Sci. 10, 2853 (2020). https://doi.org/10.3390/app10082853
Fan, J., Yang, C., Chen, Y., Wang, H., Huang, Z.: An underwater robot with self-adaption mechanism for cleaning steel pipes with variable diameters. Ind. Robot.: Int. J. 45(2), 193–205 (2018). https://doi.org/10.1108/IR-09-2017-0168
Christopher Gotts, C., Hall, B., Beaumont, O., Chen, Z., Cleaver, W., England, J., White, D., Thornton, B.: Development of a prototype autonomous inspection robot for offshore riser cables. Ocean Eng. 257, 111485 (2022). https://doi.org/10.1016/j.oceaneng.2022.111485
Chen, G., Yang, H., Cao, H., Ji, S., Zeng, X.: Design of an embracing-type climbing robot for variation diameter rod. Ind. Robot.: Int. J. Robot. Res. Appl. Emerald Publishing Limited [ISSN 0143-991X] (2019). https://doi.org/10.1108/IR-09-2018-0200
Lu, X., Zhao, S., Liu, X.: Design and analysis of a climbing robot for pylon maintenance. Ind. Robot.: Int. J. Emerald Publishing Limited [ISSN 0143-991X] (2018). https://doi.org/10.1108/IR-08-2017-0143
Ding, N., Zheng, Z., Song, J., Sun, Z., Lam, T., Qian, H.: CCRobot-III: a Split-type Wire-driven cable climbing robot for cable-stayed bridge inspection. In: IEEE International Conference on Robotics and Automation (ICRA) (2020). https://doi.org/10.1109/ICRA40945.2020.9196772
Bandyopadhyay, T., Steindl, R., Talbot, F., Kottege, N., Dungavell, R., Wood, B., Barker, J., Hoehn, K., Elfes, A.: Magneto: a versatile multi-limbed inspection robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2018). https://doi.org/10.1109/IROS.2018.8593891
Li, J., Huang, F., Tu, C., Tian, M., Wang, X.: Elastic obstacle-surmounting pipeline-climbing robot with composite wheels. Machines 10, 874 (2022). https://doi.org/10.3390/machines10100874
Xu, F., Dai, S., Jiang, Q., Wang, X.: Developing a climbing robot for repairing cables of cable-stayed bridges. Autom. Constr. 129, 103807 (2021). https://doi.org/10.1016/j.autcon.2021.103807
Han, G., Li, J., Chen, Y., Wang, S., Chen, H.: Dynamic modeling and motion control strategy of cable-driven cleaning robot for ship cargo hold. Mar. Sci. Eng. (2023). https://doi.org/10.3390/jmse11010087
Begey, J., Cuvillon, L., Lesellier, M., Gouttefarde, M., Gangloff, J.: Dynamic control of parallel robots driven by flexible cables and actuated by position-controlled winches. IEEE Trans. Robot. (99), 1–8 (2018). https://doi.org/10.1109/TRO.2018.2875415
Lee, D., Oh, S., Son, H.: Wire-driven parallel robotic system and its control for maintenance of offshore wind turbines. In: IEEE International Conference on Robotics and Automation (ICRA) (2016). https://doi.org/10.1109/ICRA.2016.7487221
Gagliardini, L., Caro, S., Gouttefarde, M., Wenger, P., Girin, A.: Optimal design of cable-driven parallel robots for large industrial structures. In: IEEE International Conference on Robotics and Automation (ICRA) (2014). https://doi.org/10.1109/ICRA.2014.6907703
Liu, Y., Seo, T.: AnyClimb-II: dry-adhesive linkage-type climbing robot for uneven vertical surfaces. Mech. Mach. Theory 124, 197–210 (2018). https://doi.org/10.1016/j.mechmachtheory.2018.02.010
Koh, D.C.Y., et al.: Design and analysis of a miniature two-wheg climbing robot with robust internal and external transitioning capabilities. In: IEEE, International Conference on Robotics and Automation (2019). https://doi.org/10.1109/ICRA.2019.8793910
Liang, P., Gao, X., Zhang, Q., Gao, R., Li, M., Xu, Y., Zhu, W.: Design and stability analysis of a wall-climbing robot using propulsive force of propeller symmetry (2021). https://doi.org/10.3390/sym13010037
Liu, Y., Wang, L., Niu, F., Li, P., Li, Y., Mei, T.: A track-type inverted climbing robot with bio-inspired spiny grippers. J. Bionic Eng. 17, 920–931 (2020)
Wang, R., Huang, H., Yuan, J.: Design and analysis of a novel tree climbing robot mechanism. Res. Sq. (2020). https://doi.org/10.21203/rs.3.rs-55599/v1
Wang, H., Yamamoto, A.: Analyses and solutions for the buckling of thin and flexible electrostatic inchworm climbing robots. IEEE Trans. Rob. 33, 889–900 (2017)
Zhang, Q., Gao, X., Li, M., Wei, Y., Liang, P.: DP-climb: a hybrid adhesion climbing robot design and analysis for internal transition machines (2022). https://doi.org/10.3390/machines10080678
Sun, J., Bauman, L., Yu, L., Zhao, B.: Gecko-and-inchworm-inspired untethered soft robot for climbing on walls and ceilings. Cell Rep. Phys. Sci. (2023)
Stephen, J., Das, C., Khanna, V., Negi, V., Harikrishnan, K.: Autonomous staircase climbing robot for rescue application. In: IOP Conference Series: Materials Science and Engineering (2020). https://doi.org/10.1088/1757-899X/912/3/032085
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Negri, D. et al. (2024). Analysis of the Influence of Human Exposure to Risk and ESG as Motivators for the Implementation of Climbing and Mobile Robots. In: Youssef, E.S.E., Tokhi, M.O., Silva, M.F., Rincon, L.M. (eds) Synergetic Cooperation Between Robots and Humans. CLAWAR 2023. Lecture Notes in Networks and Systems, vol 810. Springer, Cham. https://doi.org/10.1007/978-3-031-47269-5_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-47269-5_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-47268-8
Online ISBN: 978-3-031-47269-5
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)