Skip to main content

Low-Cost Prototype for Analysis and Monitoring of Underwater Structures

  • Conference paper
  • First Online:
Synergetic Cooperation Between Robots and Humans (CLAWAR 2023)

Abstract

Special Session: Sensing and Perception for Robotics Analyzing and monitoring underwater structures is still a challenge for humanity. A Remotely Operated Vehicle (ROV) equipped with sonar is a feasible alternative for assessing structures in harsh environments. However, the cost associated with this equipment is high. Therefore, this work presents an innovative low-cost device capable of performing analysis and monitoring of submerged structures, using a Mechanical Scanning Imaging Sonar (MSIS) sonar to generate acoustic images and carry out the 3D reconstruction of the analyzed surface. The use of sonar makes the measurements independent of ambient luminosity and is not affected by water turbidity. Experimental results show that the proposed device is suitable for the analysis and monitoring of underwater structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rietbroek, R., Brunnabend, S.-E., Kusche, J., Schröter, J., Dahle, C.: Revisiting the contemporary sea-level budget on global and regional scales. Proc. Natl. Acad. Sci. 113(6), 1504–1509 (2016)

    Article  Google Scholar 

  2. Justo, B., dos Santos, M.M., Drews, P.L.J., Arigony, J., Vieira, A.W.: 3d surfaces reconstruction and volume changes in underwater environments using msis sonar. Lat. Amer. Robot. Symp. (LARS) 2019, 115–120 (2019)

    Google Scholar 

  3. Maurell, I.P., dos Santos, M.M., de Oliveira Evald, P.J.D., Justo, B.H., Arigony-Neto, J., Vieira, A.W., Botelho, S.S., Drews, P.L.: Volume change estimation of underwater structures using 2-d sonar data. IEEE Sens. J. 22(23), 23 380–23 392 (2022)

    Google Scholar 

  4. Reid, A.: Rov market prospects (2013). https://www.globalunderwaterhub.com/documen ts/presentations/ssuk%20-%20rov%20event%20-%20sep%202013%20%5bweb%5d.pdf

  5. Mai, C., Pedersen, S., Hansen, L., Jepsen, K.L., Yang, Z.: Subsea infrastructure inspection: a review study. In: 2016 IEEE International Conference on Underwater System Technology: Theory and Applications (USYS), pp. 71–76. IEEE (2016)

    Google Scholar 

  6. Hartman, S.E., Lampitt, R.S., Larkin, K.E., Pagnani, M., Campbell, J., Gkritzalis, T., Jiang, Z.-P., Pebody, C.A., Ruhl, H.A., Gooday, A.J.: The porcupine abyssal plain fixed-point sustained observatory (PAP-SO): variations and trends from the northeast atlantic fixed-point time-series. ICES J. Mar. Sci. 69(5), 776–783 (2012)

    Article  Google Scholar 

  7. Jones, D.O.B., Gates, A.R., Huvenne, V.A.I., Phillips, A.B., Bett, B.J.: Autonomous marine environmental monitoring: application in decommissioned oil fields. Sci. Total Environ. 668, 835–853 (2019)

    Article  Google Scholar 

  8. Paull, L., Saeedi, S., Seto, M., Li, H.: AUV navigation and localization: a review. IEEE J. Oceanic Eng. 39(1), 131–149 (2013)

    Article  Google Scholar 

  9. Howe, J.A., Husum, K., Inall, M.E., Coogan, J., Luckman, A., Arosio, R., Abernethy, C., Verchili, D.: Autonomous underwater vehicle (AUV) observations of recent tidewater glacier retreat, western svalbard. Mar. Geol. 417, 106009 (2019)

    Article  Google Scholar 

  10. Batchelor, C.L., Montelli, A., Ottesen, D., Evans, J., Dowdeswell, E.K., Christie, F.D., Dowdeswell, J.A.: New insights into the formation of submarine glacial landforms from high-resolution autonomous underwater vehicle data. Geomorphology 370, 107396 (2020)

    Article  Google Scholar 

  11. Stevens, L.A., Straneo, F., Das, S.B., Plueddemann, A.J., Kukulya, A.L., Morlighem, M.: Linking glacially modified waters to catchment-scale subglacial discharge using autonomous underwater vehicle observations. Cryosphere 10(1), 417–432 (2016)

    Article  Google Scholar 

  12. Zhang, H., Zhang, S., Wang, Y., Liu, Y., Yang, Y., Zhou, T., Bian, H.: Subsea pipeline leak inspection by autonomous underwater vehicle. Appl. Ocean Res. 107, 102321 (2021)

    Article  Google Scholar 

  13. Yu, L., Yang, E., Ren, P., Luo, C., Dobie, G., Gu, D., Yan, X.: Inspection robots in oil and gas industry: a review of current solutions and future trends. In: 2019 25th International Conference on Automation and Computing (ICAC), pp. 1–6. IEEE (2019)

    Google Scholar 

  14. Zagatti, R., Juliano, D.R., Doak, R., Souza, G.M., de Paula Nardy, L., Lepikson, H., Gaudig, C., Kirchner, F.: Flatfish resident AUV: leading the autonomy era for subsea oil and gas operations. In: Offshore Technology Conference. OnePetro (2018)

    Google Scholar 

  15. Ferreira, F., Machado, D., Ferri, G., Dugelay, S., Potter, J.: Underwater optical and acoustic imaging: a time for fusion? a brief overview of the state-of-the-art. In: OCEANS 2016 MTS/IEEE Monterey, pp. 1–6 (2016)

    Google Scholar 

  16. Kleeman, L., Kuc, R.: Sonar sensing. In: Springer Handbook of Robotics, pp. 753–782. Springer (2016)

    Google Scholar 

  17. Ping360 scanning imaging sonar. Blue Robotics (2022). https://bluerobotics.com/store/sensors-sonars-cameras/sonar/ping360-sonar-r1-rp/

  18. Zhou, Q.-Y., Park, J., Koltun, V.: Open3D: a modern library for 3D data processing (2018). arXiv:1801.09847

  19. Kwon, S., Park, J., Kim, J.: 3d reconstruction of underwater objects using a wide-beam imaging sonar. In: IEEE Underwater Technology (UT), pp. 1–4. IEEE (2017)

    Google Scholar 

Download references

Acknowledgment

This study was financed by the Human Resource Program of The Brazilian National Agency for Petroleum, Natural Gas, and Biofuels—PRH-ANP, supported by resources from oil companies considering the contract clause no 50/2015 of R, D &I of the ANP, CAPES, and CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilherme C. Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oliveira, G.C. et al. (2024). Low-Cost Prototype for Analysis and Monitoring of Underwater Structures. In: Youssef, E.S.E., Tokhi, M.O., Silva, M.F., Rincon, L.M. (eds) Synergetic Cooperation Between Robots and Humans. CLAWAR 2023. Lecture Notes in Networks and Systems, vol 810. Springer, Cham. https://doi.org/10.1007/978-3-031-47269-5_7

Download citation

Publish with us

Policies and ethics