Skip to main content

Efficiency Optimization of the Gear Reducer of an Overhead Power Line Inspection Robot

  • Conference paper
  • First Online:
Synergetic Cooperation between Robots and Humans (CLAWAR 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 811))

Included in the following conference series:

  • 112 Accesses

Abstract

Electrical utility companies regularly inspect their power line networks to guarantee efficiency and reliability in energy transmission and distribution. However, the power lines inspection processes are expensive and time demanding, requiring robotized solutions to become feasible. A key issue in developing power line inspection robots is their energy efficiency, as they are required to operate for as long as possible. This work aims to reduce an inspection robot’s energy consumption by optimizing the mechanical efficiency of its gear reducer’s traction motor. The robot’s gear reducer is a planetary gear train whose efficiency is modeled via Davies’ method. The planetary gear train efficiency is optimized considering volume, size, and allowable stress constraints. The impact of the performance of the original and the optimized gearboxes in the batteries’ final SOC is evaluated, and it is verified that the gearbox efficiency slightly impacts the robot’s consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. AGMA: Fundamental rating factors and calculation methods for involute spur and helical gear teeth (2004)

    Google Scholar 

  2. Alhassan, A.B., Zhang, X., Shen, H., Xu, H.: Power transmission line inspection robots: a review, trends and challenges for future research. Int. J. Electr. Power & Energy Syst. 118, 105862 (2020)

    Google Scholar 

  3. Budynas, R.G., Nisbett, J.K.: Shigley’s mechanical engineering design. McGraw Hill, New York (2020)

    Google Scholar 

  4. Bühringer, M., Berchtold, J., Büchel, M., Dold, C., Bütikofer, M., Feuerstein, M., Fischer, W., Bermes, C., Siegwart, R.: Cable-crawler–robot for the inspection of high-voltage power lines that can passively roll over mast tops. Ind. Robot. Int. J. (2010)

    Google Scholar 

  5. Coelho, V.D.O., Balbino, A.J., Artmann, V.N., Simas, H., Martins, D., Batista, G., Silva, L.R.D.J.D., Kinceler, R.: Design and analysis of a multi-port dc microgrid to power flow control in a robotic system. SEPOC 2021 (2021)

    Google Scholar 

  6. Datouo, R., Motto, F.B., Zobo, B.E., Melingui, A., Bensekrane, I., Merzouki, R.: Optimal motion planning for minimizing energy consumption of wheeled mobile robots. In: 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 2179–2184. IEEE (2017)

    Google Scholar 

  7. Debenest, P., Guarnieri, M., Takita, K., Fukushima, E.F., Hirose, S., Tamura, K., Kimura, A., Kubokawa, H., Iwama, N., Shiga, F., et al.: Expliner–toward a practical robot for inspection of high-voltage lines. In: Field and Service Robotics, pp. 45–55. Springer (2010)

    Google Scholar 

  8. Ehsani, M., Gao, Y., Longo, S., Ebrahimi, K.M.: Modern electric, hybrid electric, and fuel cell vehicles. CRC press (2018)

    Google Scholar 

  9. ISO 54:1996: Cylindrical gears for general engineering and for heavy engineering—modules. Standard, International Organization for Standardization, Geneva, CH (1996)

    Google Scholar 

  10. Jalal, M.F.A., Sahari, K.S.M., Fei, H.M., Leong, J.C.T.: Design and development of three arms transmission line inspection robot. J. Robot. Netw. Artif. Life 5(3), 157–160 (2018)

    Article  Google Scholar 

  11. Jayatilaka, M., Shanmugavel, M., Ragavan, S.V.: Robonwire: design and development of a power line inspection robot. In: Proceedings of the 1st International and 16th National Conference on Machines and Mechanisms, vol. 16, pp. 808–815 (2013)

    Google Scholar 

  12. Kularatna, N.: Energy storage devices for electronic systems: rechargeable batteries and supercapacitors. Academic Press (2014)

    Google Scholar 

  13. Labegalini, P.R., Labegalini, J.A., Fuchs, R.D., de Almeida, M.T.: Projetos mecânicos das linhas aéreas de transmissão. Editora Blucher (1992)

    Google Scholar 

  14. Laus, L., Simas, H., Martins, D.: Efficiency of gear trains determined using graph and screw theories. Mech. Mach. Theory 52, 296–325 (2012)

    Article  Google Scholar 

  15. Lima, E.J., Bomfim, M.H.S., de Miranda Mourão, M.A.: Polibot–power lines inspection robot. Ind. Robot. Int. J. (2017)

    Google Scholar 

  16. Lisle, T.J., Shaw, B.A., Frazer, R.C.: Internal spur gear root bending stress: A comparison of ISO 6336: 1996, ISO 6336: 2006, VDI 2737: 2005, AGMA, ANSYS finite element analysis and strain gauge techniques. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 233(5), 1713–1720 (2019)

    Article  Google Scholar 

  17. Liu, S., Sun, D.: Minimizing energy consumption of wheeled mobile robots via optimal motion planning. IEEE/ASME Trans. Mechatron. 19(2), 401–411 (2013)

    Article  Google Scholar 

  18. MathWorks: Genetic algorithm and direct search toolbox user’s guide. MathWorks, 1st edn. (2004)

    Google Scholar 

  19. Mei, Y., Lu, Y.H., Hu, Y.C., Lee, C.G.: A case study of mobile robot’s energy consumption and conservation techniques. In: ICAR’05. Proceedings., 12th International Conference on Advanced Robotics, 2005., pp. 492–497. IEEE (2005)

    Google Scholar 

  20. Mi, C., Masrur, M.A.: Hybrid electric vehicles: principles and applications with practical perspectives. John Wiley & Sons (2017)

    Google Scholar 

  21. Motron: MR 910-IVEBUN-300-24V/MRTR 910-IVEBUN-300-BIV (2019)

    Google Scholar 

  22. Naunheimer, H., Bertsche, B., Ryborz, J., Novak, W.: Automotive transmissions: fundamentals, selection, design and application. Springer Science & Business Media (2011)

    Google Scholar 

  23. de Engenharia e Normas (DVEN), D.: Estruturas para redes aéreas convencionais de distribuição. Celesc Distribuição S.A., 2 edn. (2014). Code E-313.0002

    Google Scholar 

  24. Norton, R.L.: Machine Design: An Integrated Approach, 4th edn. Prentice Hall (2010)

    Google Scholar 

  25. de Souza, M.B.: Powertrain optimization of hybrid and electric vehicles. Doutorado, Programa de Pós-Graduação em Engenharia Mecânica, Universidade Federal de Santa Catarina, Florianópolis (2022)

    Google Scholar 

  26. de Souza, M.B., Fernandes, G.Q., de Souza Vieira, R., Nicolazzi, L.C., Kinceler, R., Dadam, A.P.: Comparison of friction properties of materials with different hardness for cable riding robots’ wheels. In: 26th ABCM International Congress of Mechanical Engineering (COBEM 2021). ABCM (2021)

    Google Scholar 

  27. Thecnolub: Linha de produtos mancais autolubrificantes livres de manutenção (2017)

    Google Scholar 

  28. Wang, C.: High power density design for planetary gear transmission system. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 233(16), 5647–5658 (2019)

    Article  Google Scholar 

Download references

Acknowledgement

The R&D project that made this work possible was entitled “Development of a Robotized System for Inspection of Electricity Distribution Lines” (05697-0317/2017), regulated by ANEEL (“Agência Nacional de Energia Elétrica”) and financed by the Centrais Elétricas de Santa Catarina S.A. (Celesc), the electrical utility company for the southern Brazilian state of Santa Catarina. Thanks are due to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Baldissera de Souza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Souza, M.B., Fernandes, G.Q., Laus, L.P., Carboni, A.P., Martins, D. (2024). Efficiency Optimization of the Gear Reducer of an Overhead Power Line Inspection Robot. In: Youssef, E.S.E., Tokhi, M.O., Silva, M.F., Rincon, L.M. (eds) Synergetic Cooperation between Robots and Humans. CLAWAR 2023. Lecture Notes in Networks and Systems, vol 811. Springer, Cham. https://doi.org/10.1007/978-3-031-47272-5_1

Download citation

Publish with us

Policies and ethics