Skip to main content

Three-Rigid-Body Model Based NMPC for Bounding of a Quadruped with Two Spinal Joints

  • Conference paper
  • First Online:
Synergetic Cooperation between Robots and Humans (CLAWAR 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 811))

Included in the following conference series:

  • 142 Accesses

Abstract

While real-world quadrupedal animals exploit significant spine motions to realize high-speed running, current high-speed quadrupedal robots seldom incorporate spinal structures. One main reason for this gap is the complicated robot dynamics brought by spinal structures, which causes difficulties in designing high-speed locomotion controllers like Model Predictive Control (MPC). In this paper, we propose the planar Three-Rigid-Body model for a planar quadruped with two actuated spinal joints. Based on this simplified model, we derive a Nonlinear MPC for the robot’s bounding control. The Three-Rigid-Body model catches the main dynamical effects of the spinal motions, meanwhile being simple enough to facilitate the NMPC’s real-time execution. We employ Whole-Body Control (WBC) as a bottom-layer controller for the NMPC to complement modeling errors. The whole control scheme is verified in simulation. The 13 kg robot, with maximum joint torque and speed of 21 Nm and 20 rad/s, reaches the highest speed of 4.3 m/s with a Froude number of 5.24. The controllers’ computation time implies real-time execution on the real robot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://youtu.be/7jyVIfPouCc.

References

  1. Ackerman, E.: Boston dynamics’ cheetah robot now faster than fastest human (2012). https://spectrum.ieee.org/boston-dynamics-cheetah-robot-now-faster-than-fastest-human

  2. Legacy robots. https://www.bostondynamics.com/legacy

  3. Pusey, J., Duperret, J., Haynes, G.C., Knopf, R.R., Koditschek, D.E.: Free-standing leaping experiments with a power-autonomous elastic-spined quadruped. In: Defense, Security, and Sensing (2013)

    Google Scholar 

  4. Duperret, J., Koditschek, D.E.: Empirical validation of a spined sagittal-plane quadrupedal model. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 1058–1064 (2017)

    Google Scholar 

  5. Li, Z., Tan, Y., Wu, P., Zeng, S.: The compliant effect of controlled spine on interaction with the ground in quadruped trotting. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 234, 27–45 (2020)

    Google Scholar 

  6. Wang, C., Fan, C., Yang, Y., Zhan, M., Shao, H., Ma, B.: Realization of a bio-inspired cheetah robot with a flexible spine. In: 2020 IEEE International Conference on Mechatronics and Automation (ICMA), pp. 1185–1190 (2020)

    Google Scholar 

  7. Park, H.W., Wensing, P.M., Kim, S.: High-speed bounding with the MIT Cheetah 2: control design and experiments. Int. J. Robot. Res. 36, 167–192 (2017)

    Article  Google Scholar 

  8. Kim, D., Carlo, J.D., Katz, B., Bledt, G., Kim, S.: Highly dynamic quadruped locomotion via whole-body impulse control and model predictive control (2019). arXiv:abs/1909.06586

  9. Carlo, J.D., Wensing, P.M., Katz, B., Bledt, G., Kim, S.: Dynamic locomotion in the mit cheetah 3 through convex model-predictive control. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1–9 (2018)

    Google Scholar 

  10. Ding, Y., Pandala, A., Park, H.W.: Real-time model predictive control for versatile dynamic motions in quadrupedal robots. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 8484–8490 (2019)

    Google Scholar 

  11. Ding, Y., Pandala, A., Li, C., Shin, Y.H., Park, H.W.: Representation-free model predictive control for dynamic motions in quadrupeds. IEEE Trans. Rob. 37, 1154–1171 (2021)

    Article  Google Scholar 

  12. Diehl, M., Bock, H.G., Schlöder, J.P., Findeisen, R., Nagy, Z.K., Allgöwer, F.: Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations. J. Process Control 12, 577–585 (2002)

    Article  Google Scholar 

  13. Koenemann, J., Prete, A.D., Tassa, Y., Todorov, E., Stasse, O., Bennewitz, M., Mansard, N.: Whole-body model-predictive control applied to the hrp-2 humanoid. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3346–3351 (2015)

    Google Scholar 

  14. Neunert, M., Stäuble, M., Giftthaler, M., Bellicoso, C.D., Carius, J., Gehring, C., Hutter, M., Buchli, J.: Whole-body nonlinear model predictive control through contacts for quadrupeds. IEEE Robot. Autom. Lett. 3, 1458–1465 (2018)

    Article  Google Scholar 

  15. Bledt, G., Wensing, P.M., Kim, S.: Policy-regularized model predictive control to stabilize diverse quadrupedal gaits for the MIT Cheetah. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4102–4109 (2017)

    Google Scholar 

  16. Bjelonic, M., Grandia, R., Harley, O., Galliard, C., Zimmermann, S., Hutter, M.: Whole-body mpc and online gait sequence generation for wheeled-legged robots. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 8388–8395 (2021)

    Google Scholar 

  17. Li, H., Frei, R.J., Wensing, P.M.: Model hierarchy predictive control of robotic systems. IEEE Robot. Autom. Lett. 6, 3373–3380 (2021)

    Article  Google Scholar 

  18. Sleiman, J.P., Farshidian, F., Minniti, M.V., Hutter, M.: A unified mpc framework for whole-body dynamic locomotion and manipulation. IEEE Robot. Autom. Lett. 6, 4688–4695 (2021)

    Article  Google Scholar 

  19. Li, Z., Tan, Y.: Trotting motion of the quadruped model with two spinal joints and its dynamics features. J. Robot. 2020, 3156,540:1–3156,540:14 (2020)

    Google Scholar 

  20. Verschueren, R., Frison, G., Kouzoupis, D., Frey, J., van Duijkeren, N., Zanelli, A., Novoselnik, B., Albin, T., Quirynen, R., Diehl, M.: acados-a modular open-source framework for fast embedded optimal control. Math. Program. Comput. (2021). https://doi.org/10.1007/s12532-021-00208-8. https://doi.org/10.1007/s12532-021-00208-8

  21. Webots. Open-source Mobile Robot Simulation Software. https://www.cyberbotics.com

  22. Frison, G., Diehl, M.: Hpipm: a high-performance quadratic programming framework for model predictive control (2020). arXiv:abs/2003.02547

  23. Ferreau, H.J., Kirches, C., Potschka, A., Bock, H.G., Diehl, M.: qpOASES: a parametric active-set algorithm for quadratic programming. Math. Program. Comput. 6, 327–363 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research was funded by the STI 2030-Major Projects 2021ZD0201402.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingguo Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, S., Cai, W., Zhao, M. (2024). Three-Rigid-Body Model Based NMPC for Bounding of a Quadruped with Two Spinal Joints. In: Youssef, E.S.E., Tokhi, M.O., Silva, M.F., Rincon, L.M. (eds) Synergetic Cooperation between Robots and Humans. CLAWAR 2023. Lecture Notes in Networks and Systems, vol 811. Springer, Cham. https://doi.org/10.1007/978-3-031-47272-5_10

Download citation

Publish with us

Policies and ethics