Skip to main content

Double Gradient Method: A New Optimization Method for the Trajectory Optimization Problem

  • Conference paper
  • First Online:
Synergetic Cooperation between Robots and Humans (CLAWAR 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 811))

Included in the following conference series:

  • 136 Accesses

Abstract

In this paper, a new optimization method for the trajectory optimization problem is presented. This new method allows to predict racing lines described by cubic splines (problems solved in most cases by stochastic methods) in times like deterministic methods. The proposed Double Gradient Method (DGM) is not affected by the dimensionality of the problem. Comparison of the results with data collected from professional drivers has shown that the DGM is reliable for lap time simulations with race line optimization. It can help drivers find the fastest racing line, be used for embedded algorithm development or for autonomous vehicle competitions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gadola, M., Cambiaghi, D., Manzo, L., Vetturi, D.: “A Tool for Lap Time Simulation,” SAE Technical Paper 962529, Dezembro 1996

    Google Scholar 

  2. Koutrik, S.V.: Optimal control for race car minimum time maneuvering. Maritime and Materials Engineering—Delft University of Technology, Delft, Faculty of Mechanical (2015)

    Google Scholar 

  3. Casanova, D.: On minimum time vehicle manoeuvring: the theoretical optimal lap. Cranfield University, School of Mechanical Engineering (2000)

    Google Scholar 

  4. Kelly, D.P.: Lap time simulation with transient vehicle and tyre dynamics. Cranfield University School of Engineering, Automotive Studies Group (2008)

    Google Scholar 

  5. Biral, F., Lot, R.: A Curvilinear Abscissa Approach for the Lap Time Optimization of Racing Vehicles, Cape Town (2014)

    Google Scholar 

  6. Bianco, N.D., Lot, R., Gadola, M.: Minimum time optimal control simulation of a GP2 Race Car. J. Automob. Eng. 232(9), 1180–1195 (2018)

    Article  Google Scholar 

  7. Herrmann, T., Passigato, F., Betz, J., Lienkamp, M.: Minimum Race-Time Planning-Strategy for an Autonomous Electric Racecar (2020). arXiv:2005.07127

  8. Lovato, S., Massaro, M.: A three-dimensional free-trajectory quasi-steady-state optimal-control method for minimum-lap-time of race vehicles. Veh. Syst. Dyn. (2021). https://doi.org/10.1080/00423114.2021.1878242

    Article  Google Scholar 

  9. Bastos, E.A.: Otimização de SeçÔes Retangulares de Concreto Armado Submetidas à Flexo-Compressão Oblíqua Utilizando Algoritmos Genéticos. Universidade Federal do Rio de Janeiro, Rio de Janeiro (2004)

    Google Scholar 

  10. Chaves, A.A.: HeurĂ­sticas HĂ­bridas com Busca AtravĂ©s de Agrupamentos para o Problema do Caxeiro Viajante com Coleta de PrĂȘmios. Instituto Nacional de Pesquisas Espaciais, SĂŁo JosĂ© dos Campos (2005)

    Google Scholar 

  11. Gross, J.C.: Derivative-Free Methods for High-Dimensional Optimization with Application to Centrifugal Pump Design. University of Cambridge, Cambridge (2021)

    Google Scholar 

  12. Lenzo, B., ROSSI, V.: A simple mono-dimensional approach for lap time optimisation. Appl. Sci. 1498(10) (2020)

    Google Scholar 

  13. Jain, A., Morari, M.: Computing the Racing Line Using Bayesian Optimization, 12 Feb. 2020

    Google Scholar 

  14. Srinivasan, S., Sa, I., Zyner, A., Reijgwart, V., Valls, M.I., Siegwart, R.: End-to-End velocity estimation for autonomous. IEEE Robot. Autom. Lett. 5(4), 6869–6875 (2020)

    Article  Google Scholar 

  15. Kapania, N.R., Subosits, J., Gerdes, J.C.: A sequential two-step algorithm for fast generation of vehicle racing trajectories, ASME. J. Dyn. Sys. Meas. Control 138(9) (2016)

    Google Scholar 

  16. Garlick, S., Bradley, A.: Real-Time Optimal Trajectory Planning for Autonomous Vehicles and Lap Time Simulation Using Machine Learning, 18 Mar. 2021

    Google Scholar 

  17. Konar, A.: Artificial Intelligence and Soft Computing: Behavioral and Cognitive Modeling of the Human Brain. CRC Press, Boca Raton (1999)

    Book  Google Scholar 

  18. Filho, J.L.R., Treleaven, P.C., Alippi, C.: Genetic algorithm programming environments. IEEE Computer Society Press, pp. 28–43 (1994)

    Google Scholar 

  19. Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997)

    Article  MathSciNet  Google Scholar 

  20. MĂłr, F.N.: An evolutionary approach for the task mapping problem. PontifĂ­cia Universidade CatĂłlica do Rio Grande do Sul, Porto Alegre (2016)

    Google Scholar 

  21. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7, 308–313 (1965)

    Article  MathSciNet  Google Scholar 

  22. Spendley, W., Hext, G.R., Himsworth, F.R.: Sequential application of simplex designs in optimisation and evolutionary operation. Technometrics 4, 441 (1962)

    Article  MathSciNet  Google Scholar 

  23. Gao, F., Han, L.: Implementing the Nelder-Mead simplex algorithm with adaptive parameters. Comput. Optim. Appl. 51, 259–277 (2012)

    Article  MathSciNet  Google Scholar 

  24. Ravindran, A., Ragsdell, K.M., Reklaitis, G.V.: Engineering Optimization: Methods and Applications, 2ÂȘ Wiley, Hoboken, New Jersey (2006)

    Book  Google Scholar 

  25. Giuliani, C.M.: Estratégias de Otimização não Diferenciåvel Aplicadas à Maximização da Produção de Campos de Petróleo. Universidade Federal de Santa Catarina, Florianópolis (2013)

    Google Scholar 

  26. Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust-Region Methods. MPS/SIAM, Philadelphia (2000)

    Book  Google Scholar 

  27. Yuan, Y.-X.: Recent advances in trust region algorithms. Math. Program. 151, 249–281 (2015)

    Article  MathSciNet  Google Scholar 

  28. Aflak, O.: BĂ©zier Interpolation—Create smooth shapes using BĂ©zier curves,” 9 Maio (2020)

    Google Scholar 

  29. Farin, G.E.: Curves and Surfaces for Computer-Aided Geometric Design—A Practical Guide, 3rd ed. Arizona: Academic Press Inc. (2014)

    Google Scholar 

Download references

Acknowledgement

The Authors would like to thank Bahia Research Foundation (FAPESB) for the financial support (grant 0342/2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alam Rosato MacĂȘdo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

MacĂȘdo, A.R., Youssef, E.S.E., da Costa, M.V.A. (2024). Double Gradient Method: A New Optimization Method for the Trajectory Optimization Problem. In: Youssef, E.S.E., Tokhi, M.O., Silva, M.F., Rincon, L.M. (eds) Synergetic Cooperation between Robots and Humans. CLAWAR 2023. Lecture Notes in Networks and Systems, vol 811. Springer, Cham. https://doi.org/10.1007/978-3-031-47272-5_14

Download citation

Publish with us

Policies and ethics