Skip to main content

Human-Robot Autonomous System: An Interactive Architecture

  • Conference paper
  • First Online:
Synergetic Cooperation between Robots and Humans (CLAWAR 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 811))

Included in the following conference series:

  • 128 Accesses

Abstract

Social robotics is a growing field that aims to enhance the interaction between robots and humans in everyday settings. To achieve this goal, various new techniques for human-robot interaction (HRI) have emerged. One such technique is proxemic interaction, which governs how people and robots interact based on their distance from each other, leading to the definition of proxemic zones. In our work, we present a socially-aware navigation system built on proxemic principles. This system responds to voice commands and incorporates a Chatbot to determine the robot’s path within a crowded environment. This innovative social navigation system is seamlessly integrated into GProxemic Navigation, a system that not only provides the robot’s location but also intelligently identifies the proxemic zones that the robot should avoid while navigating. These proxemic zones are determined based on the characteristics of the environment. To showcase the functionality and suitability of our proposed proxemic navigation system, we have implemented it in an autonomous Pepper Robot This implementation allows the Pepper Robot to navigate efficiently while respecting the social constraints imposed by the environment, enhancing the robot’s ability to coexist harmoniously with people in shared spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Naneva, S., Sarda Gou, M., Webb, T.L., e Prescott, T.J.: A systematic review of attitudes, anxiety, acceptance, and trust towards social robots. Int. J. Soc. Robot. 12(6), 1179–1201 (2020)

    Google Scholar 

  2. Belpaeme, T., Kennedy, J., Ramachandran, A., Scassellati, B. e Tanaka, F.: Social robots for education: a review. Sci. Robot. 3(21), eaat5954 (2018)

    Google Scholar 

  3. Henschel, A., Hortensius, R., Cross, E.S.: Social cognition in the age of human-robot interaction. Trends Neurosci. 43(6), 373–384 (2020)

    Article  Google Scholar 

  4. Correia, E., Leite, A., Fernandes, G., Vilasboas, J., Sampaio, M., Bastos, A., Díaz-Amado, J., Soares, J., Cardinale, Y.: An architecture for social-aware navigation based on a chatbot interaction. In: Proceedings of the 18th International Conference on Intelligent Environments (IE2022). IEEE (2022)

    Google Scholar 

  5. Alami, R., Albu-Schaeffer, A., Bicchi, A., Bischoff, R., Chatila, R., De Luca, A., De Santis, A., Giralt, G., Guiochet, J., Hirzinger, G., Ingrand, F., Lippiello, V., Mattone, R., Powell, D., Sen, S., Siciliano, B., Tonietti, G., Villani, L.: Safe and dependable physical human-robot interaction in anthropic domains: state of the art and challenges. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2006, pp. 1–16 (2006). https://doi.org/10.1109/IROS.2006.6936985

  6. Valipour, S., Perez, C., Jagersand, M.: Incremental learning for robot perception through HRI. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2772–2777 (2017). https://doi.org/10.1109/IROS.2017.8206106

  7. Sergiyenko, O.Y., Tyrsa, V.V.: 3D optical machine vision sensors with intelligent data management for robotic swarm navigation improvement. IEEE Sensors J. 21(10) 11262–11274 (2020)

    Google Scholar 

  8. Correia, É. et al.: An architecture for social-aware navigation based on a chatbot interaction. In: Workshops at 18th International Conference on Intelligent Environments (IE2022). IOS Press (2022)

    Google Scholar 

  9. Ballendat, T., Marquardt, N., Greenberg, S.: Proxemic interaction: designing for a proximity and orientation-aware environment. In: Proceedings of International Conference on Interactive Tabletops and Surfaces, Saarbrücken, Germany, 7-10 November. ACM, pp. 121–130 (2010). https://doi.org/10.1145/1936652.1936676

  10. Daza, M., Barrios-Aranibar, D., Diaz-Amado, J., Cardinale, Y. e Vilasboas, J. An approach of social navigation based on proxemics for crowded environments of humans and robots. Micromachines 12(2), 193 (2021)

    Google Scholar 

  11. Mead, R., Matari’c, M.J.: Perceptual models of human-robot proxemics. In: Experimental Robotics, pp. 261–276, Springer, Berlin, Germany (2016)

    Google Scholar 

  12. Redondo, M.E.L.: Comfortability Detection for Adaptive Human-Robot Interactions. In: 2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW), Cambridge, UK, 3-6 September, pp. 35–39. IEEE (2019)

    Google Scholar 

  13. Breazeal, C., Dautenhahn, K., Kanda, T. Social Robotics. Springer Handbook of Robotics, pp. 1935–1972 (2016)

    Google Scholar 

  14. Kanda, T. e Ishiguro, H.: Human-Robot Interaction in Social Robotics. CRC Press (2017)

    Google Scholar 

  15. Sheridan, T.B.: A review of recent research in social robotics. Curr. Opinion Psychol. 36, 7–12 (2020)

    Google Scholar 

  16. Vilasboas, J.P., Sampaio, M.S.C., Moreira, G.F., Souza, A.B., Diaz-Amado, J., Barrios-Aranibar, D., Cardinale, Y., Soares, J.E.: Application of social constraints for dynamic navigation considering semantic annotations on geo-referenced maps. In: IECON 2021 - 47th Annual Conference of the IEEE Industrial Electronics Society, pp. 1–7 (2021). https://doi.org/10.1109/IECON48115.2021.9589235

  17. Akhund, T.M.N.U., Siddik, M.A.B., Hossain, M.R., Rahman, M.M., Newaz, N.T., Saifuzzaman, M. IoT Waiter Bot: a low cost IoT based multi functioned robot for restaurants. In: 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions)(ICRITO), pp. 1174–1178. IEEE (2020)

    Google Scholar 

  18. Qing-xiao, Yu., Can, Y., Zhuang, F., Yan-zheng, Z.: Research of the localization of restaurant service robot. Int. J. Adv. Rob. Syst. 7(3), 18 (2010)

    Article  Google Scholar 

  19. Kuo, C-M., Chen, L-C., Tseng, C-Y.: Investigating an innovative service with hospitality robots. Int. J. Contemp. Hospitality Manag. Emerald Publishing Limited (2017)

    Google Scholar 

  20. Takahashi, M., Suzuki, T., Shitamoto, H., Moriguchi, T., Yoshida, K.: Developing a mobile robot for transport applications in the hospital domain. Robot. Auton. Syst. 58(7), 889–899 (2010)

    Article  Google Scholar 

  21. Papathanassis, A.: R-Tourism: Introducing the Potential Impact of Robotics and Service Automation in Tourism. Ovidius University Annals, Series Economic Sciences, vol. 17, no. 1 (2017)

    Google Scholar 

  22. Coad, M.M., Blumenschein, L.H., Cutler, S., Zepeda, J.A.R., Naclerio, N.D., El-Hussieny, H., Mehmood, U., Ryu, J.-H., Hawkes, E.W., Okamura, A.M.: Vine robots: design, teleoperation, and deployment for navigation and exploration. IEEE Robot. Autom. Mag. 27(3), 120–132 (2019)

    Article  Google Scholar 

  23. Bettencourt, R., Lima, P.U.: Multimodal navigation for autonomous service robots. In: 2021 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), pp. 25–30. IEEE (2021)

    Google Scholar 

  24. Fiorini, L., Mancioppi, G., Semeraro, F., Fujita, H., Cavallo, F.: Unsupervised emotional state classification through physiological parameters for social robotics applications. Knowl.-Based Syst. 190, 105217 (2020)

    Article  Google Scholar 

  25. Banisetty, S.B., Williams, T.: Implicit communication through social distancing: can social navigation communicate social norms? In: Companion of the 2021 ACM/IEEE International Conference on Human-Robot Interaction, pp. 499–504 (2021)

    Google Scholar 

  26. Gin’es, J., Mart’ın, F., Vargas, D., Rodríguez, F.J., Matell’an, V.: Social navigation in a cognitive architecture using dynamic proxemic zones. Sensors 19(23), 5189 (2019)

    Article  Google Scholar 

  27. Lee, M.H., Ahn, H.S., Wang, K., MacDonald, B.: Design of an API for integrating robotic software frameworks. In: Proceedings of the 2014 Australasian Conference on Robotics and Automation (ACRA 2014), vol. 2, No. 3.2, pp. 1–1 (2014). Citeseer

    Google Scholar 

  28. Imteaj, A., Chowdhury, M.I.J., Farshid, M., Shahid, A.R. RoboFI: autonomous path follower robot for human body detection and geolocalization for search and rescue missions using computer vision and IoT. In: 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT), pp. 1-6. IEEE (2019)

    Google Scholar 

  29. Aguiar, A.S., dos Santos, F.N., Cunha, J.B., Sobreira, H., Sousa, A.J.: Localization and mapping for robots in agriculture and forestry: a survey. Robotics 9(4), 97 (2020). Multidisciplinary Digital Publishing Institute

    Google Scholar 

  30. Jishnu, U.K., Indu, V., Ananthakrishnan, K.J., Amith, K., Reddy, P.S., Pramod, S.: voice controlled personal assistant robot for elderly people. In: 2020 5th International Conference on Communication and Electronics Systems (ICCES), pp. 269–274 (2020). https://doi.org/10.1109/ICCES48766.2020.9138101

  31. Saravanan, M., Selvababu, B., Jayan, A., Anand, A., Raj, A.: Arduino based voice controlled robot vehicle. IOP Conf. Ser.: Mater. Sci. Eng. 993(1), 012125 (2020)

    Article  Google Scholar 

  32. Vega, A., Cintas, R., Manso, L.J., Bustos, P. N’u nez, P.: Socially-accepted path planning for robot navigation based on social interaction spaces. In: Proceedings of the Iberian Robotics conference. Springer, pp. 644–655 (2019)

    Google Scholar 

  33. Karar, A.S., Said, S., Beyrouthy, T.: Pepper humanoid robot as a service robot: a customer approach. In: 2019 3rd International Conference on Bio-engineering for Smart Technologies (BioSMART). IEEE (2019)

    Google Scholar 

Download references

Acknowledgment

We thank the Federal Instituto Federal de Educação, Ciência e Tecnologia da Bahia (IFBA), the Research Group GIPAR - Grupo de Inovação e Pesquisa em Automação e Robótica and Public Call No 03/2022/PRPGI for their support and assistance in the development of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovane Moreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moreira, G., Leite, A., Díaz-Amado, J., Libarino, C., Marques, J. (2024). Human-Robot Autonomous System: An Interactive Architecture. In: Youssef, E.S.E., Tokhi, M.O., Silva, M.F., Rincon, L.M. (eds) Synergetic Cooperation between Robots and Humans. CLAWAR 2023. Lecture Notes in Networks and Systems, vol 811. Springer, Cham. https://doi.org/10.1007/978-3-031-47272-5_22

Download citation

Publish with us

Policies and ethics