Skip to main content

Towards a Gait Planning Training Strategy Using Lokomat

  • Conference paper
  • First Online:
Synergetic Cooperation between Robots and Humans (CLAWAR 2023)

Abstract

The main goal in this study was to investigate how strategies used to perform motor gait planning in an uncontrolled environment affects patterns of neural activity in healthy volunteers during task performance. Materials and Methods A 16-channel EEG system with electrodes and 2 channels of sEMG were used to acquire data from 10 healthy subjects. The data was processed to obtain for each foot the ERD for \(\mu \) and \(\beta \) rhythms; the spectrogram and continuous wavelet transform of the average 5 s segments and the STFT of the motor planning period. Results The results show significant differences in the ERD and FFT between feets that will be used in future works to develop an intervention using Lokomat to aid SCI individuals that cannot voluntarily initiate the gait. Conclusion This study is a preliminary study, it is still possible to draw some initial conclusions about the feasibility of using EEG signals to analyze gait motor planning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wagner, F.B., Mignardot, J.B., Le Goff-Mignardot, C.G., Demesmaeker, R., Komi, S., Capogrosso, M., Rowald, A., Seáñez, I., Caban, M., Pirondini, E., et al.: Targeted neurotechnology restores walking in humans with spinal cord injury. Nature 563(7729), 65–71 (2018)

    Article  Google Scholar 

  2. Takakusaki, K.: Functional neuroanatomy for posture and gait control. J. Mov. Disord. 10(1), 1 (2017)

    Article  Google Scholar 

  3. MacKinnon, C.D.: Sensorimotor anatomy of gait, balance, and falls. Handb. Clin. Neurol. 159, 3–26 (2018)

    Article  Google Scholar 

  4. Scott, S.H., Cluff, T., Lowrey, C.R., Takei, T.: Feedback control during voluntary motor actions. Curr. Opin. Neurobiol. 33, 85–94 (2015)

    Article  Google Scholar 

  5. Biasiucci, A., Franceschiello, B., Murray, M.M.: Electroencephalography. Curr. Biol. 29(3), R80–R85 (2019)

    Article  Google Scholar 

  6. Hortal, E., Úbeda, A., Iáñez, E., Azorín, J.M., Fernández, E.: Eeg-based detection of starting and stopping during gait cycle. Int. J. Neural Syst. 26(07), 1650,029 (2016)

    Google Scholar 

  7. Hassan, M., Wendling, F.: Electroencephalography source connectivity: aiming for high resolution of brain networks in time and space. IEEE Signal Process. Mag. 35(3), 81–96 (2018)

    Article  Google Scholar 

  8. Grasmücke, D., Zieriacks, A., Jansen, O., Fisahn, C., Sczesny-Kaiser, M., Wessling, M., Meindl, R.C., Schildhauer, T.A., Aach, M.: Against the odds: what to expect in rehabilitation of chronic spinal cord injury with a neurologically controlled hybrid assistive limb exoskeleton a subgroup analysis of 55 patients according to age and lesion level. Neurosurg. Focus. 42(5), E15 (2017)

    Google Scholar 

  9. Gao, M., Wang, Z., Pang, Z., Sun, J., Li, J., Li, S., Zhang, H.: Electrically driven lower limb exoskeleton rehabilitation robot based on anthropomorphic design. Machines 10(4), 266 (2022)

    Article  Google Scholar 

  10. Wendong, W., Hanhao, L., Menghan, X., Yang, C., Xiaoqing, Y., Xing, M., Bing, Z.: Design and verification of a human-robot interaction system for upper limb exoskeleton rehabilitation. Med. Eng. Phys. 79, 19–25 (2020)

    Article  Google Scholar 

  11. Alashram, A.R., Annino, G., Padua, E.: Robot-assisted gait training in individuals with spinal cord injury: a systematic review for the clinical effectiveness of lokomat. J. Clin. Neurosci. 91, 260–269 (2021)

    Article  Google Scholar 

  12. Marchal-Crespo, L., Riener, R.: Technology of the robotic gait orthosis Lokomat. In: Neurorehabilitation Technology, pp. 665–681. Springer (2022)

    Google Scholar 

  13. Qaiser, T., Eginyan, G., Chan, F., Lam, T.: The sensorimotor effects of a lower limb proprioception training intervention in individuals with a spinal cord injury. J. Neurophysiol. (2019)

    Google Scholar 

  14. Delisle-Rodriguez, D., Cardoso, V., Gurve, D., Loterio, F., Romero-Laiseca, M.A., Krishnan, S., Bastos-Filho, T.: System based on subject-specific bands to recognize pedaling motor imagery: towards a bci for lower-limb rehabilitation. J. Neural Eng. 16(5), 056,005 (2019)

    Google Scholar 

  15. Jiang, N., Gizzi, L., Mrachacz-Kersting, N., Dremstrup, K., Farina, D.: A brain-computer interface for single-trial detection of gait initiation from movement related cortical potentials. Clin. Neurophysiol. 126(1), 154–159 (2015)

    Article  Google Scholar 

  16. Karimi, F., Jiang, N.: A reference-based source extraction algorithm to extract movement related cortical potentials for brain-computer interface applications. In: 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), pp. 3603–3607. IEEE (2019)

    Google Scholar 

  17. McFarland, D.J., Miner, L.A., Vaughan, T.M., Wolpaw, J.R.: Mu and beta rhythm topographies during motor imagery and actual movements. Brain Topogr. 12, 177–186 (2000)

    Article  Google Scholar 

  18. Neuper, C., Wörtz, M., Pfurtscheller, G.: Erd/ers patterns reflecting sensorimotor activation and deactivation. In: Event-Related Dynamics of Brain Oscillations, vol. 159, pp. 211–222. Elsevier (2006)

    Google Scholar 

  19. Zhang, W., Low, L.F., Schwenk, M., Mills, N., Gwynn, J.D., Clemson, L.: Review of gait, cognition, and fall risks with implications for fall prevention in older adults with dementia. Dement. Geriatr. Cogn. Disord. 48(1–2), 17–29 (2019)

    Article  Google Scholar 

  20. Erbil, N., Ungan, P.: Changes in the alpha and beta amplitudes of the central EEG during the onset, continuation, and offset of long-duration repetitive hand movements. Brain Res. 1169, 44–56 (2007)

    Article  Google Scholar 

  21. Pfurtscheller, G., Da Silva, F.L.: Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. 110(11), 1842–1857 (1999)

    Article  Google Scholar 

  22. Lazarou, I., Nikolopoulos, S., Petrantonakis, P.C., Kompatsiaris, I., Tsolaki, M.: Eeg-based brain-computer interfaces for communication and rehabilitation of people with motor impairment: a novel approach of the 21st century. Front. Hum. Neurosci. 12 (2018)

    Google Scholar 

  23. Micera, S., Caleo, M., Chisari, C., Hummel, F.C., Pedrocchi, A.: Advanced neurotechnologies for the restoration of motor function. Neuron 105(4), 604–620 (2020)

    Article  Google Scholar 

  24. Shokur, S., Donati, A.R.C., Campos, D.S.F., Gitti, C., Bao, G., Fischer, D., Almeida, S., Braga, V.A.S., Augusto, P., Petty, C., Alho, E.J.L., Lebedev, M., Song, A.W., Nicolelis, M.A.L.: Training with brain-machine interfaces, visuo-tactile feedback and assisted locomotion improves sensorimotor, visceral, and psychological signs in chronic paraplegic patients. PLOS ONE 13 (2018)

    Google Scholar 

  25. James, N.D., McMahon, S.B., Field-Fote, E.C., Bradbury, E.J.: Neuromodulation in the restoration of function after spinal cord injury. Lancet Neurol. 17(10), 905–917 (2018)

    Article  Google Scholar 

  26. Shafiul Hasan, S., Siddiquee, M.R., Atri, R., Ramon, R., Marquez, J.S., Bai, O.: Prediction of gait intention from pre-movement EEG signals: a feasibility study. J. Neuroeng. Rehabil. 17(1), 1–16 (2020)

    Article  Google Scholar 

  27. Hallett, M., DelRosso, L.M., Elble, R., Ferri, R., Horak, F.B., Lehericy, S., Mancini, M., Matsuhashi, M., Matsumoto, R., Muthuraman, M., et al.: Evaluation of movement and brain activity. Clin. Neurophysiol. 132(10), 2608–2638 (2021)

    Article  Google Scholar 

  28. Winter, D., Yack, H.: EMG profiles during normal human walking: stride-to-stride and inter-subject variability. Electroencephalogr. Clin. Neurophysiol. 67, 402–411 (1987)

    Article  Google Scholar 

  29. Konrad, P.: The ABC of EMG. A practical introduction to kinesiological electromyography 1(2005), 30–5 (2005)

    Google Scholar 

  30. Ludwig, K.A., Miriani, R.M., Langhals, N.B., Joseph, M.D., Anderson, D.J., Kipke, D.R.: Using a common average reference to improve cortical neuron recordings from microelectrode arrays. J. Neurophysiol. 101(3), 1679–1689 (2009)

    Article  Google Scholar 

  31. Hashimoto, Y., Ushiba, J.: EEG-based classification of imaginary left and right foot movements using beta rebound. Clin. Neurophysiol. 124(11), 2153–2160 (2013)

    Article  Google Scholar 

  32. Zheng, J., Shi, P., Fan, M., Liang, S., Li, S., Yu, H.: Effects of passive and active training modes of upper-limb rehabilitation robot on cortical activation: a functional near-infrared spectroscopy study. NeuroReport 32(6), 479–488 (2021)

    Article  Google Scholar 

  33. Mohammed, H., Hollis, E.R.: Cortical reorganization of sensorimotor systems and the role of intracortical circuits after spinal cord injury. Neurotherapeutics 15(3), 588–603 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to thank the CNPq scholarships from Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thayse Saraiva de Albuquerque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Albuquerque, T.S. et al. (2024). Towards a Gait Planning Training Strategy Using Lokomat. In: Youssef, E.S.E., Tokhi, M.O., Silva, M.F., Rincon, L.M. (eds) Synergetic Cooperation between Robots and Humans. CLAWAR 2023. Lecture Notes in Networks and Systems, vol 811. Springer, Cham. https://doi.org/10.1007/978-3-031-47272-5_30

Download citation

Publish with us

Policies and ethics