Skip to main content

Tensegrity Approaches for Flexible Robots: A Review

  • Conference paper
  • First Online:
Synergetic Cooperation between Robots and Humans (CLAWAR 2023)

Abstract

Tensegrity robots are an emerging class of systems that use tensegrity principles to achieve a unique combination of flexibility and strength. Tensegrity is an engineering concept that combines compression and tension elements to create lightweight and resistant structures. This approach can achieve greater adaptability and flexibility in robots’ movement and their interaction with the environment. In addition, the ability of flexible systems with tensegrity to resist and recover from impacts and deformations makes them more resistant to damage than traditional rigid systems. Also, tensegrity robots have been applied in different environments, such as planetary exploration, flexible manipulation, locomotion, and modular robotics. This review presents basic definitions of tensegrity applied to flexible robots, the leading methods for structural and dynamic analysis of tensegrity robots, and emerging applications developed in recent years and still under development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu, Y., Bi, Q., Li, Y.: Development of a bio-inspired soft robotic gripper based on tensegrity structures. s.l., IEEE (2021)

    Google Scholar 

  2. Zheng, Y., Asano, F., Li, F., Yan, C.: Analysis of passive dynamic gait of tensegrity robot. In: Robotics for Sustainable Future. CLAWAR 2021. Lecture Notes in Networks and Systems, vol. 324 (2022)

    Google Scholar 

  3. Wang, T., Post, M.A., Tyrrell, A.M.: Articulating Resilience: Adaptive Locomotion of Wheeled Tensegrity Robot. Electronics, February, vol. 11, p. 666 (2022). (February)

    Google Scholar 

  4. Zhao, W., Pashkevich, A., Klimchik, A., Chablat, D.: Elastostatic modeling of multi-link flexible manipulator based on two-dimensional dual-triangle tensegrity mechanism. J. Mech. Robot. 14 (2021). (September)

    Google Scholar 

  5. Ramadoss, V. et al.: HEDRA: A Bio-Inspired Modular Tensegrity Robot With Polyhedral Parallel Modules. s.l., IEEE (2022)

    Google Scholar 

  6. Allen, E.A.: Variable stiffness structures via mechanics modification and antagonistic actuation in soft robotic materials (2020)

    Google Scholar 

  7. Zappetti, D.: Variable-stiffness tensegrity modular robots. In: EPFL Scientific Publications (2021)

    Google Scholar 

  8. Shah, D.S. et al.: Tensegrity robotics. Soft Robot. 9, 639–656 (2022)

    Google Scholar 

  9. Wang, C., Vangelatos, Z., Grigoropoulos, C.P., Ma, Z.: Micro-engineered architected metamaterials for cell and tissue engineering. Mater. Today Adv. 13, 100206 (2022)

    Google Scholar 

  10. Zhang, X., Nie, R., Chen, Y., He, B.: Deployable structures: structural design and static/dynamic analysis. J. Elast. 146, 199–235 (2021). (October)

    Google Scholar 

  11. Kan, Z., Peng, H., Chen, B., Zhong, W.: A sliding cable element of multibody dynamics with application to nonlinear dynamic deployment analysis of clustered tensegrity. Int. J. Solids Struct. 130–131, 61–79 (2018). (January)

    Google Scholar 

  12. Dong, Y., Ding, J., Wang, C., Liu, X.: Kinematics analysis and optimization of a 3-DOF planar tensegrity manipulator under workspace constraint. Machines 9, 256 (2021). (October)

    Google Scholar 

  13. Yuan, S., Zhu, W.: A new approach to nonlinear dynamic modeling and vibration analysis of tensegrity structures. s.l., American Society of Mechanical Engineers (2022)

    Google Scholar 

  14. Kan, Z., Peng, H., Chen, B., Zhong, W.: Nonlinear dynamic and deployment analysis of clustered tensegrity structures using a positional formulation FEM. Compos. Struct. 187, 241–258 (2018). (March)

    Google Scholar 

  15. Zhang, L.-Y. et al.: Multilevel structural defects-induced elastic wave tunability and localization of a tensegrity metamaterial. Compos. Sci. Technol. 207, 108740 (2021). (May)

    Google Scholar 

  16. Yuan, S., Zhu, W.: A cartesian spatial discretization method for nonlinear dynamic modeling and vibration analysis of tensegrity structures. Int. J. Solids Struct. 112179 (2023)

    Google Scholar 

  17. Bui, H.Q., Kawabata, M., Nguyen, C.V.: A combination of genetic algorithm and dynamic relaxation method for practical form-finding of tensegrity structures. Adv. Struct. Eng. 25, 2237–2254 (2022). (May)

    Google Scholar 

  18. Wang, X., Cai, J., Lee, D.S., Xu, Y., Feng, J.: Numerical form-finding of multi-order tensegrity structures by grouping elements. Steel Compos. Struct. 41(2), 267–277 (2021)

    Article  Google Scholar 

  19. Su, Y., Zhang, J., Ohsaki, M., Wu, Y.: Topology optimization and shape design method for large-span tensegrity structures with reciprocal struts. Int. J. Solids Struct. 206, 9–22 (2020). (December)

    Google Scholar 

  20. Ma, et al.: TsgFEM: tensegrity finite element method. J. Open Source Softw. 7(75), 3390 (2022)

    Article  MathSciNet  Google Scholar 

  21. Sabouni-Zawadzka, A.A.: Extreme mechanical properties of regular tensegrity unit cells in 3D lattice metamaterials. Materials 13, 4845 (2020). (October)

    Google Scholar 

  22. Martins, D., Gonçalves, P.J.P.: On the dynamics of a smart tensegrity structure using shape memory alloy. J. Phys. Conf. Ser. 1264 (2019). (July)

    Google Scholar 

  23. Feng, X., Miah, M.S., Ou, Y.: Dynamic behavior and vibration mitigation of a spatial tensegrity beam. Eng. Struct. 171, 1007–1016 (2018). (September)

    Google Scholar 

  24. Wang, Y., Xu, X., Luo, Y.: Form-finding of tensegrity structures via rank minimization of force density matrix. Eng. Struct. 227, 111419 (2021). (January)

    Google Scholar 

  25. Goyal, R., Chen, M., Majji, M., Skelton, R.: MOTES: modeling of tensegrity structures. J. Open Source Softw. 4, 1613 (2019). (October)

    Google Scholar 

  26. Zappetti, D. et al.: Dual stiffness tensegrity platform for resilient robotics. Adv. Intell. Syst. 4, 2200025 (2022). (May)

    Google Scholar 

  27. Šljivić, A., Miljanović, S., Zlatar, M.: A new classification of deployable structures. In: E3S Web of Conferences, vol. 244, pp. 05016 (2021)

    Google Scholar 

  28. Krishnan, S., Li, B.: Design of lightweight deployable antennas using the tensegrity principle. s.l., American Society of Civil Engineers (2018)

    Google Scholar 

  29. Doney, K. et al.: Behavioral repertoires for soft tensegrity robots. s.l., IEEE (2020)

    Google Scholar 

  30. Tibert, A.G., Pellegrino, S.: Deployable tensegrity reflectors for small satellites. J. Spacecr. Rocket. 39(5) (2012)

    Google Scholar 

  31. Kim, K., Agogino, A.K., Agogino, A.M.: Rolling locomotion of cable-driven soft spherical tensegrity robots. Soft Robot. 7, 346–361 (2020). (June)

    Google Scholar 

  32. Gao, R. et al.: Design of a novel quadruped robot based on tensegrity structures. s.l., IEEE (2021)

    Google Scholar 

  33. Mintchev, S., Zappetti, D., Willemin, J., Floreano, D.: A soft robot for random exploration of terrestrial environments. s.l., IEEE (2018)

    Google Scholar 

  34. Meng, P., Wang, W., Balkcom, D., Bekris, K.E.: Proof-of-concept designs for the assembly of modular dynamic tensegrities into easily deployable structures. s.l., American Society of Civil Engineers (2021)

    Google Scholar 

  35. Yuan, X. et al.: Recent progress in the design and fabrication of multifunctional structures based on metamaterials. In: Current Opinion in Solid State and Materials Science, vol. 25, pp. 100883 (2021). (February)

    Google Scholar 

  36. Rieffel, J., Mouret, J.-B.: Adaptive and resilient soft tensegrity robots. Soft Robot. 5, pp. 318–329 (2018). (June)

    Google Scholar 

  37. Tan, N., Hayat, A.A., Elara, M.R., Wood, K.L.: A framework for taxonomy and evaluation of self-reconfigurable robotic systems. IEEE Access 8, 13969–13986 (2020)

    Article  Google Scholar 

  38. Friesen, J.M., Dean, J.L., Bewley, T., Sunspiral, V.: A tensegrity-inspired compliant 3-DOF compliant joint. s.l., IEEE (2018)

    Google Scholar 

  39. Tang, Y., Li, T., Lv, Q., Wang, X.: A self-vibration-control tensegrity structure for space large-scale construction. Mech. Syst. Signal Process. 177, 109241 (2022). (September)

    Google Scholar 

  40. Vespignani, M., Friesen, J. M., SunSpiral, V., Bruce, J.: Design of SUPERball v2, a compliant tensegrity robot for absorbing large impacts. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid, Spain, pp. 2865–2871 (2018)

    Google Scholar 

  41. Yagi, S., Kang, S., Yu, S., Mahzoon, H.: Evaluation of shape-changing tensegrity structure robot for physical human-robot interaction. In: 2019 IEEE International Conference on Advanced Robotics and its Social Impacts (ARSO), pp. 20–24. Beijing, China (2019)

    Google Scholar 

  42. Barkan, A.R. et al.: Force-sensing tensegrity for investigating physical human-robot interaction in compliant robotic systems. s.l., IEEE (2021)

    Google Scholar 

  43. BrandĂŁo, A., Savi, M.A.: Nonlinear mechanics of a smart biotensegrity human foot prosthesis. Int. J. Appl. Mech. 14 (2022). (January)

    Google Scholar 

  44. Wei, D. et al.: Flexible bio-tensegrity manipulator with multi-degree of freedom and variable structure. Chin. J. Mech. Eng. 33 (2020). (February)

    Google Scholar 

  45. Kuang, X. et al.: Advances in 4D printing: materials and applications. Adv. Funct. Mater. 29, 1805290 (2018). (November)

    Google Scholar 

  46. Niazy, D., Elsabbagh, A., Ismail, M.R.: Mono–material 4D printing of digital shape–memory components. Polymers 13, 3767 (2021). (October)

    Google Scholar 

  47. Aberoumand, M., Rahmatabadi, D., Aminzadeh, A., Moradi, M.: 4D Printing by Fused Deposition Modeling (FDM). Em: Materials Forming, Machining and Tribology. s.l.:Springer International Publishing, pp. 377–402 (2021)

    Google Scholar 

  48. Chavez Vega, J., Schorr , P., Kaufhold, T., Zentner, L., Zimmermann, K., Böhm, V.: Influence of elastomeric tensioned members on the characteristics of compliant tensegrity structures in soft robotic applications. Procedia Manuf. 52 (2020)

    Google Scholar 

  49. Liu, Y. et al.: A review on tensegrity structures-based robots. Mech. Mach. Theory 168, 104571 (2022). (February)

    Google Scholar 

  50. Muralidharan, V., Wenger, P.: Optimal design and comparative study of two antagonistically actuated tensegrity joints. Mech. Mach. Theory 159, 104249 (2021). (May)

    Google Scholar 

Download references

Acknowledgement

The authors are grateful to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), through Programa de Excelência Acadêmica (PROEX), for the financial support on Process Number 88887.685173/2022–00 and 88887.518120/2020–00. Also, to financial support received by FAPERJ foundation through the program Bolsa de doutorado nota-10 with number 204.144/2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan C. Guacheta-Alba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guacheta-Alba, J.C., Valencia-Casteneda, A.J., Dutra, M.S., Mauledoux, M., Aviles, O.F. (2024). Tensegrity Approaches for Flexible Robots: A Review. In: Youssef, E.S.E., Tokhi, M.O., Silva, M.F., Rincon, L.M. (eds) Synergetic Cooperation between Robots and Humans. CLAWAR 2023. Lecture Notes in Networks and Systems, vol 811. Springer, Cham. https://doi.org/10.1007/978-3-031-47272-5_5

Download citation

Publish with us

Policies and ethics