Abstract
Superficial white matter (SWM) plays an important role in functioning of the human brain, and it contains a large amount of cortico-cortical connections. However, the difficulties of generating complete and reliable U-fibers make SWM-related analysis lag behind relatively matured Deep white matter (DWM) analysis. With the aid of some newly proposed surface-based SWM tractography algorithms, we have developed a specialized SWM filtering method based on a symmetric variational autoencoder (VAE). In this work, we first demonstrate the advantage of the spherical representation and generate these spherical tracts using the triangular mesh and the registered spherical surface. We then introduce the Filtering via symmetric Autoencoder for Spherical Superficial White Matter tractography (FASSt) framework with a novel symmetric weights module to perform the filtering task in a latent space. We evaluate and compare our method with the state-of-the-art clustering-based method on diffusion MRI data from Human Connectome Project (HCP). The results show that our proposed method outperform these clustering methods and achieves excellent performance in groupwise consistency and topographic regularity.
This work is supported by the National Institute of Health (NIH) under grants R01EB022744, RF1AG077578, RF1AG056573, RF1AG064584, R21AG064776, U19AG078109, and P41EB015922.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Kirilina, E., et al.: Superficial white matter imaging: contrast mechanisms and whole-brain in vivo mapping. Sci. Adv. 6(41), eaaz9281 (2020)
Schüz, A., Braitenberg, V.: The human cortical white matter: quantitative aspects of cortico-cortical long-range connectivity. Cortical areas: Unity and diversity. 377–385 (2002)
Guevara, M., Guevara, P., Román, C., Mangin, J.F.: Superficial white matter: a review on the DMRI analysis methods and applications. Neuroimage 212, 116673 (2020)
Catani, M., et al.: Short frontal lobe connections of the human brain. Cortex 48(2), 273–291 (2012)
Vergani, F., et al.: White matter connections of the supplementary motor area in humans. J. Neurol. Neurosurg. Psych. 85(12), 1377–1385 (2014)
Nie, X., Shi, Y.: Probabilistic tracking u-fiber on the superficial white matter surface. bioRxiv pp. 2022–05 (2022)
Shastin, D., et al.: Surface-based tracking for short association fibre tractography. Neuroimage 260, 119423 (2022)
Garyfallidis, E., Brett, M., Correia, M.M., Williams, G.B., Nimmo-Smith, I.: Quickbundles, a method for tractography simplification. Front. Neurosci. 6, 175 (2012)
Wang, J., Aydogan, D.B., Varma, R., Toga, A.W., Shi, Y.: Modeling topographic regularity in structural brain connectivity with application to tractogram filtering. Neuroimage 183, 87–98 (2018)
Xia, Y., Shi, Y.: Groupwise track filtering via iterative message passing and pruning. Neuroimage 221, 117147 (2020)
Legarreta, J.H., Petit, L., Rheault, F., Theaud, G., Lemaire, C., Descoteaux, M., Jodoin, P.M.: Filtering in tractography using autoencoders (FINTA). Med. Image Anal. 72, 102126 (2021)
Li, B., et al.: Neuro4neuro: a neural network approach for neural tract segmentation using large-scale population-based diffusion imaging. Neuroimage 218, 116993 (2020)
Bertò, G., et al.: Classifyber, a robust streamline-based linear classifier for white matter bundle segmentation. Neuroimage 224, 117402 (2021)
Gupta, V., Thomopoulos, S.I., Corbin, C.K., Rashid, F., Thompson, P.M.: Fibernet 2.0: an automatic neural network based tool for clustering white matter fibers in the brain. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 708–711. IEEE (2018)
Zhang, F., Karayumak, S.C., Hoffmann, N., Rathi, Y., Golby, A.J., O’Donnell, L.J.: Deep white matter analysis (DeepWMA): fast and consistent tractography segmentation. Med. Image Anal. 65, 101761 (2020)
Román, C., et al.: Clustering of whole-brain white matter short association bundles using HARDI data. Front. Neuroinform. 11, 73 (2017)
Mendoza, C., et al.: Enhanced automatic segmentation for superficial white matter fiber bundles for probabilistic tractography datasets. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 3654–3658. IEEE (2021)
Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)
Tournier, J.D., Calamante, F., Connelly, A.: MRtrix: diffusion tractography in crossing fiber regions. Int. J. Imaging Syst. Technol. 22(1), 53–66 (2012)
Aydogan, D.B., Shi, Y.: Parallel transport tractography. IEEE Trans. Med. Imaging 40(2), 635–647 (2020)
Fischl, B., Sereno, M.I., Tootell, R.B., Dale, A.M.: High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum. Brain Mapp. 8(4), 272–284 (1999)
Dale, A.M., Fischl, B., Sereno, M.I.: Cortical surface-based analysis: I. segmentation and surface reconstruction. Neuroimage 9(2), 179–194 (1999)
Fischl, B., Sereno, M.I., Dale, A.M.: Cortical surface-based analysis: II: inflation, flattening, and a surface-based coordinate system. Neuroimage 9(2), 195–207 (1999)
Kramer, M.A.: Nonlinear principal component analysis using autoassociative neural networks. AIChE J. 37(2), 233–243 (1991)
Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)
Aydogan, D.B., Shi, Y.: Tracking and validation techniques for topographically organized tractography. Neuroimage 181, 64–84 (2018)
Van Essen, D.C., et al.: The human connectome project: a data acquisition perspective. Neuroimage 62(4), 2222–2231 (2012)
Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Li, Y., Nie, X., Fu, Y., Shi, Y. (2023). FASSt: Filtering via Symmetric Autoencoder for Spherical Superficial White Matter Tractography. In: Karaman, M., Mito, R., Powell, E., Rheault, F., Winzeck, S. (eds) Computational Diffusion MRI. CDMRI 2023. Lecture Notes in Computer Science, vol 14328. Springer, Cham. https://doi.org/10.1007/978-3-031-47292-3_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-47292-3_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-47291-6
Online ISBN: 978-3-031-47292-3
eBook Packages: Computer ScienceComputer Science (R0)