Skip to main content

FASSt: Filtering via Symmetric Autoencoder for Spherical Superficial White Matter Tractography

  • Conference paper
  • First Online:
Computational Diffusion MRI (CDMRI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14328))

Included in the following conference series:

  • 287 Accesses

Abstract

Superficial white matter (SWM) plays an important role in functioning of the human brain, and it contains a large amount of cortico-cortical connections. However, the difficulties of generating complete and reliable U-fibers make SWM-related analysis lag behind relatively matured Deep white matter (DWM) analysis. With the aid of some newly proposed surface-based SWM tractography algorithms, we have developed a specialized SWM filtering method based on a symmetric variational autoencoder (VAE). In this work, we first demonstrate the advantage of the spherical representation and generate these spherical tracts using the triangular mesh and the registered spherical surface. We then introduce the Filtering via symmetric Autoencoder for Spherical Superficial White Matter tractography (FASSt) framework with a novel symmetric weights module to perform the filtering task in a latent space. We evaluate and compare our method with the state-of-the-art clustering-based method on diffusion MRI data from Human Connectome Project (HCP). The results show that our proposed method outperform these clustering methods and achieves excellent performance in groupwise consistency and topographic regularity.

This work is supported by the National Institute of Health (NIH) under grants R01EB022744, RF1AG077578, RF1AG056573, RF1AG064584, R21AG064776, U19AG078109, and P41EB015922.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kirilina, E., et al.: Superficial white matter imaging: contrast mechanisms and whole-brain in vivo mapping. Sci. Adv. 6(41), eaaz9281 (2020)

    Article  Google Scholar 

  2. Schüz, A., Braitenberg, V.: The human cortical white matter: quantitative aspects of cortico-cortical long-range connectivity. Cortical areas: Unity and diversity. 377–385 (2002)

    Google Scholar 

  3. Guevara, M., Guevara, P., Román, C., Mangin, J.F.: Superficial white matter: a review on the DMRI analysis methods and applications. Neuroimage 212, 116673 (2020)

    Article  Google Scholar 

  4. Catani, M., et al.: Short frontal lobe connections of the human brain. Cortex 48(2), 273–291 (2012)

    Article  Google Scholar 

  5. Vergani, F., et al.: White matter connections of the supplementary motor area in humans. J. Neurol. Neurosurg. Psych. 85(12), 1377–1385 (2014)

    Article  Google Scholar 

  6. Nie, X., Shi, Y.: Probabilistic tracking u-fiber on the superficial white matter surface. bioRxiv pp. 2022–05 (2022)

    Google Scholar 

  7. Shastin, D., et al.: Surface-based tracking for short association fibre tractography. Neuroimage 260, 119423 (2022)

    Article  Google Scholar 

  8. Garyfallidis, E., Brett, M., Correia, M.M., Williams, G.B., Nimmo-Smith, I.: Quickbundles, a method for tractography simplification. Front. Neurosci. 6, 175 (2012)

    Article  Google Scholar 

  9. Wang, J., Aydogan, D.B., Varma, R., Toga, A.W., Shi, Y.: Modeling topographic regularity in structural brain connectivity with application to tractogram filtering. Neuroimage 183, 87–98 (2018)

    Article  Google Scholar 

  10. Xia, Y., Shi, Y.: Groupwise track filtering via iterative message passing and pruning. Neuroimage 221, 117147 (2020)

    Article  Google Scholar 

  11. Legarreta, J.H., Petit, L., Rheault, F., Theaud, G., Lemaire, C., Descoteaux, M., Jodoin, P.M.: Filtering in tractography using autoencoders (FINTA). Med. Image Anal. 72, 102126 (2021)

    Article  Google Scholar 

  12. Li, B., et al.: Neuro4neuro: a neural network approach for neural tract segmentation using large-scale population-based diffusion imaging. Neuroimage 218, 116993 (2020)

    Article  Google Scholar 

  13. Bertò, G., et al.: Classifyber, a robust streamline-based linear classifier for white matter bundle segmentation. Neuroimage 224, 117402 (2021)

    Article  Google Scholar 

  14. Gupta, V., Thomopoulos, S.I., Corbin, C.K., Rashid, F., Thompson, P.M.: Fibernet 2.0: an automatic neural network based tool for clustering white matter fibers in the brain. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 708–711. IEEE (2018)

    Google Scholar 

  15. Zhang, F., Karayumak, S.C., Hoffmann, N., Rathi, Y., Golby, A.J., O’Donnell, L.J.: Deep white matter analysis (DeepWMA): fast and consistent tractography segmentation. Med. Image Anal. 65, 101761 (2020)

    Article  Google Scholar 

  16. Román, C., et al.: Clustering of whole-brain white matter short association bundles using HARDI data. Front. Neuroinform. 11, 73 (2017)

    Article  Google Scholar 

  17. Mendoza, C., et al.: Enhanced automatic segmentation for superficial white matter fiber bundles for probabilistic tractography datasets. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 3654–3658. IEEE (2021)

    Google Scholar 

  18. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  19. Tournier, J.D., Calamante, F., Connelly, A.: MRtrix: diffusion tractography in crossing fiber regions. Int. J. Imaging Syst. Technol. 22(1), 53–66 (2012)

    Article  Google Scholar 

  20. Aydogan, D.B., Shi, Y.: Parallel transport tractography. IEEE Trans. Med. Imaging 40(2), 635–647 (2020)

    Article  Google Scholar 

  21. Fischl, B., Sereno, M.I., Tootell, R.B., Dale, A.M.: High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum. Brain Mapp. 8(4), 272–284 (1999)

    Article  Google Scholar 

  22. Dale, A.M., Fischl, B., Sereno, M.I.: Cortical surface-based analysis: I. segmentation and surface reconstruction. Neuroimage 9(2), 179–194 (1999)

    Article  Google Scholar 

  23. Fischl, B., Sereno, M.I., Dale, A.M.: Cortical surface-based analysis: II: inflation, flattening, and a surface-based coordinate system. Neuroimage 9(2), 195–207 (1999)

    Article  Google Scholar 

  24. Kramer, M.A.: Nonlinear principal component analysis using autoassociative neural networks. AIChE J. 37(2), 233–243 (1991)

    Article  Google Scholar 

  25. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  Google Scholar 

  26. Aydogan, D.B., Shi, Y.: Tracking and validation techniques for topographically organized tractography. Neuroimage 181, 64–84 (2018)

    Article  Google Scholar 

  27. Van Essen, D.C., et al.: The human connectome project: a data acquisition perspective. Neuroimage 62(4), 2222–2231 (2012)

    Article  Google Scholar 

  28. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonggang Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Nie, X., Fu, Y., Shi, Y. (2023). FASSt: Filtering via Symmetric Autoencoder for Spherical Superficial White Matter Tractography. In: Karaman, M., Mito, R., Powell, E., Rheault, F., Winzeck, S. (eds) Computational Diffusion MRI. CDMRI 2023. Lecture Notes in Computer Science, vol 14328. Springer, Cham. https://doi.org/10.1007/978-3-031-47292-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47292-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47291-6

  • Online ISBN: 978-3-031-47292-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics