Skip to main content

Diffusion Phantom Study of Fiber Crossings at Varied Angles Reconstructed with ODF-Fingerprinting

  • Conference paper
  • First Online:
Computational Diffusion MRI (CDMRI 2023)

Abstract

White matter fiber reconstructions based on seeking local maxima of Orientation Distribution Functions (ODFs) typically fail to identify fibers crossing at narrow angles below \(45^\circ \). ODF-Fingerprinting (ODF-FP) replaces the ODF maxima localization mechanism with pattern matching, allowing the use of all information stored in ODFs. In this work, we study the ability of ODF-FP to reconstruct fibers crossing at varied angles spanning \(10^\circ \)\(90^\circ \) in physical diffusion phantoms composed of textile tubes with 0.8 \(\upmu \)m diameter, approaching the anatomical scale of axons. Our results show that ODF-FP is able to correctly identify \(80\pm 8\%\) of the crossing fibers regardless of the crossing angle and provide the highest average reconstruction accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We put “white matter” in quotation marks to emphasize that our synthetic fibers served as simplified models of WM tissue. Also note that the studied diffusion phantoms did not contain structures representing gray matter or corticospinal fluid, hence the omission of their respective contributions to the diffusion-weighted signal.

References

  1. Baete, S.H., Cloos, M.A., Lin, Y.C., Placantonakis, D.G., Shepherd, T., Boada, F.E.: Fingerprinting orientation distribution functions in diffusion MRI detects smaller crossing angles. Neuroimage 198, 231–241 (2019)

    Article  Google Scholar 

  2. Baete, S.H., Yutzy, S., Boada, F.E.: Radial Q-space sampling for DSI. Magn. Reson. Med. 76(3), 769–780 (2016)

    Article  Google Scholar 

  3. Barnett, A.: Theory of Q-ball imaging redux: implications for fiber tracking. Magn. Reson. Med.: Off. J. Int. Soc. Magn. Reson. Med. 62(4), 910–923 (2009)

    Article  Google Scholar 

  4. Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In vivo fiber tractography using DT-MRI data. Magn. Res. Med. 44(4), 625–632 (2000)

    Article  Google Scholar 

  5. Behrens, T.E., Berg, H.J., Jbabdi, S., Rushworth, M.F., Woolrich, M.W.: Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? Neuroimage 34(1), 144–155 (2007)

    Article  Google Scholar 

  6. Canales-Rodríguez, E.J., et al.: Sparse wars: a survey and comparative study of spherical deconvolution algorithms for diffusion MRI. Neuroimage 184, 140–160 (2019)

    Article  Google Scholar 

  7. Deslauriers-Gauthier, S., Marziliano, P., Paquette, M., Descoteaux, M.: The application of a new sampling theorem for non-bandlimited signals on the sphere: Improving the recovery of crossing fibers for low b-value acquisitions. Med. Image Anal. 30, 46–59 (2016)

    Article  Google Scholar 

  8. Dhollander, T., Mito, R., Raffelt, D., Connelly, A.: Improved white matter response function estimation for 3-tissue constrained spherical deconvolution. In: Proceedings of the International Society for Magnetic Resonance in Medicine, vol. 555 (2019)

    Google Scholar 

  9. Filipiak, P., Shepherd, T., Lin, Y.C., Placantonakis, D.G., Boada, F.E., Baete, S.H.: Performance of orientation distribution function-fingerprinting with a biophysical multicompartment diffusion model. Magn. Reson. Med. 88(1), 418–435 (2022)

    Article  Google Scholar 

  10. He, J., et al.: Comparison of multiple tractography methods for reconstruction of the retinogeniculate visual pathway using diffusion MRI. Hum. Brain Mapp. 42(12), 3887–3904 (2021)

    Article  Google Scholar 

  11. Jelescu, I.O., Budde, M.D.: Design and validation of diffusion MRI models of white matter. Front. Phys. 5, 61 (2017)

    Article  Google Scholar 

  12. Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M.: FSL. Neuroimage 62(2), 782–790 (2012)

    Article  Google Scholar 

  13. Jensen, J.H., Helpern, J.A.: Resolving power for the diffusion orientation distribution function. Magn. Reson. Med. 76(2), 679–688 (2016)

    Article  Google Scholar 

  14. Jeurissen, B., Descoteaux, M., Mori, S., Leemans, A.: Diffusion MRI fiber tractography of the brain. NMR Biomed. 32(4), e3785 (2019)

    Article  Google Scholar 

  15. Jeurissen, B., Tournier, J.D., Dhollander, T., Connelly, A., Sijbers, J.: Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data. Neuroimage 103, 411–426 (2014)

    Article  Google Scholar 

  16. Kellner, E., Dhital, B., Kiselev, V.G., Reisert, M.: Gibbs-ringing artifact removal based on local subvoxel-shifts. Magn. Res. Med. 76(5), 1574–1581 (2016)

    Article  Google Scholar 

  17. Maier-Hein, K.H., et al.: The challenge of mapping the human connectome based on diffusion tractography. Nat. Commun. 8(1), 1–13 (2017)

    Article  Google Scholar 

  18. Nilsson, M., Lätt, J., Ståhlberg, F., van Westen, D., Hagslätt, H.: The importance of axonal undulation in diffusion MR measurements: a Monte Carlo simulation study. NMR Biomed. 25(5), 795–805 (2012)

    Article  Google Scholar 

  19. Panagiotaki, E., Schneider, T., Siow, B., Hall, M.G., Lythgoe, M.F., Alexander, D.C.: Compartment models of the diffusion MR signal in brain white matter: a taxonomy and comparison. Neuroimage 59(3), 2241–2254 (2012)

    Article  Google Scholar 

  20. Schilling, K.G., et al.: Limits to anatomical accuracy of diffusion tractography using modern approaches. Neuroimage 185, 1–11 (2019)

    Article  Google Scholar 

  21. Schneider, W., Pathak, S., Wu, Y., Busch, D., Dzikiy, D.J.: Taxon anisotropic phantom delivering human scale parametrically controlled diffusion compartments to advance cross laboratory research and calibration. In: ISMRM 2019 (2019)

    Google Scholar 

  22. Tournier, J.D., Calamante, F., Connelly, A.: MRtrix: diffusion tractography in crossing fiber regions. Imaging Syst. Technol. 22(1), 53–66 (2012)

    Article  Google Scholar 

  23. Tournier, J.D., Calamante, F., Connelly, A.: Determination of the appropriate b value and number of gradient directions for high-angular-resolution diffusion-weighted imaging. NMR Biomed. 26(12), 1775–1786 (2013)

    Article  Google Scholar 

  24. Tournier, J.D., Smith, R., Raffelt, D., Tabbara, R., Dhollander, T., et al.: MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation. Neuroimage 202, 116137 (2019)

    Article  Google Scholar 

  25. Tournier, J.D., Yeh, C.H., Calamante, F., Cho, K.H., Connelly, A., Lin, C.P.: Resolving crossing fibres using constrained spherical deconvolution: validation using diffusion-weighted imaging phantom data. Neuroimage 42(2), 617–625 (2008)

    Article  Google Scholar 

  26. Tuch, D.S., Reese, T.G., Wiegell, M.R., Wedeen, V.J.: Diffusion MRI of complex neural architecture. Neuron 40(5), 885–895 (2003)

    Article  Google Scholar 

  27. Tustison, N.J., Avants, B.B., Cook, P.A., Zheng, Y., et al.: N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29(6), 1310–1320 (2010)

    Article  Google Scholar 

  28. Veraart, J., Novikov, D.S., Christiaens, D., Ades-Aron, B., et al.: Denoising of diffusion MRI using random matrix theory. Neuroimage 142, 394–406 (2016)

    Article  Google Scholar 

  29. Wedeen, V.J., et al.: Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. Neuroimage 41(4), 1267–1277 (2008)

    Article  Google Scholar 

  30. Yeh, F.C., Wedeen, V.J., Tseng, W.Y.I.: Generalized Q-sampling imaging. IEEE Trans. Med. Imaging 29(9), 1626–1635 (2010)

    Article  Google Scholar 

  31. Yeh, F.: Diffusion MRI reconstruction in DSI Studio. Advanced Biomedical MRI Lab, National Taiwan University Hospital (2017). http://dsi-studio.labsolver.org/Manual/Reconstruction

Download references

Acknowledgements

This project was supported in part by the National Institutes of Health (NIH, R01 EB028774 and R01 NS082436) under the rubric of the Center for Advanced Imaging Innovation and Research (CAI2R, https://www.cai2r.net), a NIBIB Biomedical Technology Resource Center (NIH P41 EB017183).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patryk Filipiak .

Editor information

Editors and Affiliations

Ethics declarations

Source Code Availability Statement

The Python code of ODF-FP implemented as an extension of the DIPY library is available at https://github.com/filipp02/dipy_odffp.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Filipiak, P. et al. (2023). Diffusion Phantom Study of Fiber Crossings at Varied Angles Reconstructed with ODF-Fingerprinting. In: Karaman, M., Mito, R., Powell, E., Rheault, F., Winzeck, S. (eds) Computational Diffusion MRI. CDMRI 2023. Lecture Notes in Computer Science, vol 14328. Springer, Cham. https://doi.org/10.1007/978-3-031-47292-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47292-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47291-6

  • Online ISBN: 978-3-031-47292-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics