Skip to main content

Improving Multi-Tensor Fitting with Global Information from Track Orientation Density Imaging

  • Conference paper
  • First Online:
Computational Diffusion MRI (CDMRI 2023)

Abstract

The number of fascicles per-voxel N is a crucial parameter for multiple-fiber reconstruction methods from diffusion magnetic resonance imaging (dMRI) data, such as the multi-tensor model (MTM). This parameter is especially important when the goal is to provide bundle-specific tissue metrics. However, for MTM, statistical selection methods, such as the F-test, the Akaike and the Bayesian information criteria, tend to overestimate the number of tensors per-voxel for typical multi-shell dMRI acquisitions. In this work, we explore the reasons for this overestimation and propose to combine track orientation density imaging (TODI) with a robust MTM fitting framework to improve the estimation of N per-voxel. We conducted experiments on both synthetic and clinical in vivo dMRI data to validate our method, and we observed that tractography seems to be a useful spatial regularizer for N. Our results demonstrate the effectiveness of incorporating TODI for a more accurate and robust estimation of the intra-voxel number of fascicles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. https://mrtrix.readthedocs.io/en/dev/concepts/fixels_dixels.html

  2. http://hardi.epfl.ch/static/events/2012_ISBI/data_format.html

  3. Behrens, T., Berg, H.J., Jbabdi, S., Rushworth, M., Woolrich, M.: Probabilistic diffusion tractography with multiple Fibre orientations: what can we gain? Neuroimage 34(1), 144–155 (2007)

    Article  Google Scholar 

  4. Coronado-Leija, R., Ramirez-Manzanares, A., Marroquin, J.L.: Estimation of individual axon bundle properties by a multi-resolution discrete-search method. Med. Image Anal. 42, 26–43 (2017)

    Article  Google Scholar 

  5. Daducci, A., et al.: Quantitative comparison of reconstruction methods for intra-voxel fiber recovery from diffusion MRI. IEEE Trans. Med. Imaging 33(2), 384–399 (2014)

    Article  Google Scholar 

  6. Daducci, A., Palu, A.D., Lemkaddem, A., Thiran, J.P.: COMMIT: convex optimization modeling for microstructure informed tractography. IEEE Trans. Med. Imaging 34(1), 246–257 (2015)

    Article  Google Scholar 

  7. E., H.G., C., P., R., C.L., M., D.: Real-time rendering of massive multi-tensor fields using modern OpenGL. In: Proceedings of the International Society for Magnetic Resonance in Medicine (2022)

    Google Scholar 

  8. Edde, M., et al.: High-frequency longitudinal white matter diffusion- and myelin-based MRI database: Reliability and variability. Hum. Brain Mapp. 44(9), 3758–3780 (2023)

    Article  Google Scholar 

  9. Gudbjartsson, H., Patz, S.: The Rician distribution of noisy MRI data. Magn. Reson. Med. 34(6), 910–914 (1995)

    Article  Google Scholar 

  10. Hernandez-Gutierrez, E., et al.: Multi-tensor fixel-based metrics in tractometry: application to multiple sclerosis. In: Proceedings of the 2023 Annual Meeting of the Organization for Human Brain Mapping. Montreal, Canada (2023)

    Google Scholar 

  11. Hosey, T., Williams, G., Ansorge, R.: Inference of multiple fiber orientations in high angular resolution diffusion imaging. Magn. Reson. Med. 54(6), 1480–1489 (2005)

    Article  Google Scholar 

  12. Inglis, B., Bossart, E., Buckley, D., Wirth, E., Mareci, T.: Visualization of neural tissue water compartments using biexponential diffusion tensor MRI. Magn. Reson. Med. 45(4), 580–587 (2001)

    Article  Google Scholar 

  13. Jeurissen, B., Leemans, A., Tournier, J.D., Jones, D.K., Sijbers, J.: Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging. Hum. Brain Mapp. 34(11), 2747–2766 (2012)

    Article  Google Scholar 

  14. Jeurissen, B., Tournier, J.D., Dhollander, T., Connelly, A., Sijbers, J.: Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data. Neuroimage 103, 411–426 (2014)

    Article  Google Scholar 

  15. Kreher, B.W., Schneider, J.F., Mader, I., Martin, E., Hennig, J., Il’yasov, K.A.: Multitensor approach for analysis and tracking of complex fiber configurations. Magn. Reson. Med. 54(5), 1216–1225 (2005)

    Article  Google Scholar 

  16. Melie-García, L., Canales-Rodríguez, E.J., Alemán-Gómez, Y., Lin, C.P., Iturria-Medina, Y., Valdés-Hernández, P.A.: A bayesian framework to identify principal intravoxel diffusion profiles based on diffusion-weighted MR imaging. Neuroimage 42(2), 750–770 (2008)

    Article  Google Scholar 

  17. Panagiotaki, E., Schneider, T., Siow, B., Hall, M.G., Lythgoe, M.F., Alexander, D.C.: Compartment models of the diffusion MR signal in brain white matter: a taxonomy and comparison. Neuroimage 59(3), 2241–2254 (2012)

    Article  Google Scholar 

  18. Basser, P.J., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biophys. J . 66(1), 259–267 (1994)

    Article  Google Scholar 

  19. Ramirez-Manzanares, A., Rivera, M., Vemuri, B., Carney, P., Mareci, T.: Diffusion basis functions decomposition for estimating white matter intravoxel fiber geometry. IEEE Trans. Med. Imaging 26(8), 1091–1102 (2007)

    Article  Google Scholar 

  20. Rojas-Vite, G., et al.: Histological validation of per-bundle water diffusion metrics within a region of fiber crossing following axonal degeneration. Neuroimage 201, 116013 (2019)

    Article  Google Scholar 

  21. Scherrer, B., et al.: Characterizing the distribution of anisotropic micro-structural environments with diffusion-weighted imaging (DIAMOND). In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8151, pp. 518–526. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40760-4_65

    Chapter  Google Scholar 

  22. Scherrer, B., Warfield, S.K.: Parametric representation of multiple white matter fascicles from cube and sphere diffusion MRI. PLoS ONE 7(11), e48232 (2012)

    Article  Google Scholar 

  23. Schilling, K., Gao, Y., Janve, V., Stepniewska, I., Landman, B.A., Anderson, A.W.: Can increased spatial resolution solve the crossing fiber problem for diffusion MRI? NMR Biomed. 30(12), e3787 (2017)

    Article  Google Scholar 

  24. Theaud, G., Houde, J.C., Boré, A., Rheault, F., Morency, F., Descoteaux, M.: TractoFlow: a robust, efficient and reproducible diffusion MRI pipeline leveraging nextflow & amp singularity. Neuroimage 218, 116889 (2020)

    Article  Google Scholar 

  25. Tournier, J.D., Calamante, F., Connelly, A.: Robust determination of the Fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. Neuroimage 35(4), 1459–1472 (2007)

    Article  Google Scholar 

  26. Tournier, J.D., Calamante, F., Gadian, D.G., Connelly, A.: Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. Neuroimage 23(3), 1176–1185 (2004)

    Article  Google Scholar 

  27. Tournier, J.D., Calamante, F., Connelly, A.: Improved probabilistic streamlines tractography by 2nd order integration over fibre orientation distributions. Proc. Intl. Soc. Mag. Reson. Med. (ISMRM) 18 (2010)

    Google Scholar 

  28. Tuch, D.S., Reese, T.G., Wiegell, M.R., Makris, N., Belliveau, J.W., Wedeen, V.J.: High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn. Reson. Med. 48(4), 577–582 (2002)

    Article  Google Scholar 

  29. Villaseñor, P.J., et al.: Multi-tensor diffusion abnormalities of gray matter in an animal model of cortical dysplasia. Front. Neurol. 14, 1124282 (2023)

    Article  Google Scholar 

  30. Zhang, F., et al.: Quantitative mapping of the brain’s structural connectivity using diffusion MRI tractography: a review. Neuroimage 249, 118870 (2022)

    Article  Google Scholar 

  31. Zhang, H., Schneider, T., Wheeler-Kingshott, C.A., Alexander, D.C.: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 61(4), 1000–1016 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erick Hernandez-Gutierrez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hernandez-Gutierrez, E., Coronado-Leija, R., Ramirez-Manzanares, A., Barakovic, M., Magon, S., Descoteaux, M. (2023). Improving Multi-Tensor Fitting with Global Information from Track Orientation Density Imaging. In: Karaman, M., Mito, R., Powell, E., Rheault, F., Winzeck, S. (eds) Computational Diffusion MRI. CDMRI 2023. Lecture Notes in Computer Science, vol 14328. Springer, Cham. https://doi.org/10.1007/978-3-031-47292-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47292-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47291-6

  • Online ISBN: 978-3-031-47292-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics