Skip to main content

Automatic Fast and Reliable Recognition of a Small Brain White Matter Bundle

  • Conference paper
  • First Online:
Computational Diffusion MRI (CDMRI 2023)

Abstract

Large diffusion MRI datasets provide the statistical power necessary to model complex effects in the white matter. They also motivate the need for fully automatic algorithms for finding white matter bundles. One popular algorithm, Automated Fiber Quantification (AFQ), has been shown to be reliable for analyzing a suite of large bundles. Here, we demonstrate that this approach can be extended to a relatively small white matter bundle, the optic tract. We develop an automated method that finds a portion of this bundle automatically. We compare the automatically found optic tract to optic tracts previously found using an algorithm that requires expert intervention, and find high degree of overlap. While previous methods work well in high-quality data, we demonstrate that the novel method proposed here generalizes broadly in subjects from three different datasets with differing data quality and a broad age range. Finally, we describe how this approach could be easily extended to other small bundles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jernigan, T.L., Brown, S.A., Dowling, G.J.: The adolescent brain cognitive development study. J. Res. Adolesc. 28(1), 154–156 (2018)

    Article  Google Scholar 

  2. Sudlow, C.: UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12(3), e1001779 (2015)

    Article  Google Scholar 

  3. Yeatman, J.D., Dougherty, R.F., Myall, N.J., Wandell, B.A., Feldman, H.M.: Tract profiles of white matter properties: automating fiber-tract quantification. PloS One 7(11), e49790 (2012)

    Article  Google Scholar 

  4. Jones, D.K., Travis, A.R., Eden, G., Pierpaoli, C., Basser, P.J.: PASTA: pointwise assessment of streamline tractography attributes. Magn. Reson. Med. 53(6), 1462–1467 (2005)

    Article  Google Scholar 

  5. Kruper, J., et al.: Evaluating the reliability of human brain white matter tractometry. Apert. Neuro 1(1) (2021)

    Google Scholar 

  6. Miyata, T., Benson, N.C., Winawer, J., Takemura, H.: Structural covariance and heritability of the optic tract and primary visual cortex in living human brains. J. Neurosci. 42(35), 6761–6769 (2022)

    Article  Google Scholar 

  7. Ogawa, S., et al.: Multi-contrast magnetic resonance imaging of visual white matter pathways in patients with glaucoma. Invest. Ophthalmol. Vis. Sci. 63(2), 29 (2022)

    Article  Google Scholar 

  8. He, J., et al.: Comparison of multiple tractography methods for reconstruction of the retinogeniculate visual pathway using diffusion MRI. Hum. Brain Mapp. 42(12), 3887–3904 (2021)

    Article  Google Scholar 

  9. Lerma-Usabiaga, G., Liu, M., Paz-Alonso, P.M., Wandell, B.A.: Reproducible tract profiles 2 (RTP2) suite, from diffusion MRI acquisition to clinical practice and research. Sci. Rep. 13(1), 6010 (2023)

    Article  Google Scholar 

  10. Liu, M., Lerma-Usabiaga, G., Clascá, F., Paz-Alonso, P.M.: Reproducible protocol to obtain and measure first-order relay human thalamic white-matter tracts. Neuroimage 262, 119558 (2022)

    Article  Google Scholar 

  11. Van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E., Yacoub, E., Ugurbil, K., Wu-Minn HCP Consortium: The WU-Minn human connectome project: an overview. Neuroimage 80, 62–79 (2013)

    Google Scholar 

  12. Alexander, L.M., et al.: An open resource for transdiagnostic research in pediatric mental health and learning disorders. Sci. Data 4, 170181 (2017)

    Article  Google Scholar 

  13. Richie-Halford, A., et al.: An analysis-ready and quality controlled resource for pediatric brain white-matter research. Sci. Data 9(1), 616 (2022)

    Article  Google Scholar 

  14. Fonov, V., Evans, A.C., Botteron, K., Almli, C.R., McKinstry, R.C., Collins, D.L., Brain Development Cooperative Group: Unbiased average age-appropriate atlases for pediatric studies. Neuroimage 54(1), 313–327 (2011)

    Google Scholar 

  15. Yeh, F.C., Wedeen, V.J., Tseng, W.Y.I.: Generalized q-sampling imaging. IEEE Trans. Med. Imaging 29(9), 1626–1635 (2010)

    Article  Google Scholar 

  16. Dell’Acqua, F., Lacerda, L., Catani, M., Simmons, A.: Anisotropic power maps: a diffusion contrast to reveal low anisotropy tissues from HARDI data. Proc. Intl. Soc. Mag. Reson. Med. 22, 29960–29967 (2014)

    Google Scholar 

  17. Rokem, A., et al. GPU-accelerated diffusion MRI tractography in DIPY. Proc. Intl. Soc. Mag. Reson. Med. 21 (2021)

    Google Scholar 

  18. Tournier, J.D., Calamante, F., Connelly, A.: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. Neuroimage 35(4), 1459–1472 (2007)

    Article  Google Scholar 

  19. Garyfallidis, E., Brett, M., Correia, M.M., Williams, G.B., Nimmo-Smith, I.: Quickbundles, a method for tractography simplification. Front. Neurosci. 6, 175 (2012)

    Article  Google Scholar 

  20. Garyfallidis, E., et al.: Dipy, a library for the analysis of diffusion MRI data. Front. Neuroinf. 8, 8 (2014)

    Article  Google Scholar 

  21. Cousineau, M., et al.: A test-retest study on parkinson’s PPMI dataset yields statistically significant white matter fascicles. NeuroImage Clin. 16, 222–233 (2017)

    Article  Google Scholar 

  22. Garyfallidis, E.: Recognition of white matter bundles using local and global streamline-based registration and clustering. Neuroimage 170, 283–295 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

Data were provided in part by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University. This research has been conducted using the UK Biobank Resource under Application Number 28541. Work on this project was funded by NSF grant 1934292, and NIH grants RF1 MH121868, NIA/NIH U19AG066567. We would like to thank the Child Mind Institute Biobank for access to the Healthy Brain Network dataset. We are also grateful to Fan Zhang and Lauren O’Donnell for sharing data from [8].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Kruper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kruper, J., Rokem, A. (2023). Automatic Fast and Reliable Recognition of a Small Brain White Matter Bundle. In: Karaman, M., Mito, R., Powell, E., Rheault, F., Winzeck, S. (eds) Computational Diffusion MRI. CDMRI 2023. Lecture Notes in Computer Science, vol 14328. Springer, Cham. https://doi.org/10.1007/978-3-031-47292-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47292-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47291-6

  • Online ISBN: 978-3-031-47292-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics