Skip to main content

Self Supervised Denoising Diffusion Probabilistic Models for Abdominal DW-MRI

  • Conference paper
  • First Online:
Computational Diffusion MRI (CDMRI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14328))

Included in the following conference series:

  • 352 Accesses

Abstract

Quantitative diffusion weighted MRI in the abdomen provides important markers of disease, however significant limitations exist for its accurate computation. One such limitation is the low signal-to-noise ratio, particularly at high diffusion b-values. To address this, multiple diffusion directional images can be collected at each b-value and geometrically averaged, which invariably leads to longer scan time, blurring due to motion and other artifacts. We propose a novel parameter estimation technique based on self supervised diffusion denoising probabilistic model that can effectively denoise diffusion weighted images and work on single diffusion gradient direction images. Our source code is made available at https://github.com/quin-med-harvard-edu/ssDDPM

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Afaq, A., Andreou, A., Koh, D.: Diffusion-weighted magnetic resonance imaging for Tumour response assessment: why, when and how? Cancer Imag. 10(1A), S179 (2010)

    Article  Google Scholar 

  2. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)

    Article  Google Scholar 

  3. Bhujle, H.V., Vadavadagi, B.H.: NLM based magnetic resonance image denoising-a review. Biomed. Signal Process. Control 47, 252–261 (2019)

    Article  Google Scholar 

  4. Caro-Domínguez, P., Gupta, A.A., Chavhan, G.B.: Can diffusion-weighted imaging distinguish between benign and malignant pediatric liver tumors? Pediatr. Radiol. 48, 85–93 (2018)

    Article  Google Scholar 

  5. Cheng, H., et al.: Denoising diffusion weighted imaging data using convolutional neural networks. PLoS ONE 17(9), e0274396 (2022)

    Article  Google Scholar 

  6. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  7. Fadnavis, S., Batson, J., Garyfallidis, E.: Patch2self: denoising diffusion MRI with self-supervised learning. Adv. Neural. Inf. Process. Syst. 33, 16293–16303 (2020)

    Google Scholar 

  8. Haldar, J.P.: Low-rank modeling of local \( k \)-space neighborhoods (loraks) for constrained MRI. IEEE Trans. Med. Imag. 33(3), 668–681 (2013)

    Article  Google Scholar 

  9. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural. Inf. Process. Syst. 33, 6840–6851 (2020)

    Google Scholar 

  10. Jurek, J., et al.: Supervised denoising of diffusion-weighted magnetic resonance images using a convolutional neural network and transfer learning. Biocybern. Biomed. Eng. 43(1), 206–232(2023)

    Google Scholar 

  11. Lupu, M., Todor, D.: A singular value decomposition based algorithm for multicomponent exponential fitting of NMR relaxation signals. Chemom. Intell. Lab. Syst. 29(1), 11–17 (1995)

    Article  Google Scholar 

  12. Nichol, A.Q., Dhariwal, P.: Improved denoising diffusion probabilistic models. In: International Conference on Machine Learning, pp. 8162–8171. PMLR (2021)

    Google Scholar 

  13. von Platen, P., et al.: Diffusers: State-of-the-art diffusion models. https://github.com/huggingface/diffusers

  14. Ran, M., et al.: Denoising of 3D magnetic resonance images using a residual encoder-decoder Wasserstein generative adversarial network. Med. Image Anal. 55, 165–180 (2019)

    Article  Google Scholar 

  15. Vasylechko, S.D., Warfield, S.K., Afacan, O., Kurugol, S.: Self-supervised IVIM DWI parameter estimation with a physics based forward model. Magn. Reson. Med. 87(2), 904–914 (2022)

    Article  Google Scholar 

  16. Veraart, J., Fieremans, E., Novikov, D.S.: Diffusion MRI noise mapping using random matrix theory. Magn. Reson. Med. 76(5), 1582–1593 (2016)

    Article  Google Scholar 

  17. Wang, Y.X.J., Huang, H., Zheng, C.J., Xiao, B.H., Chevallier, O., Wang, W.: Diffusion-weighted mri of the liver: challenges and some solutions for the quantification of apparent diffusion coefficient and intravoxel incoherent motion. Am. J. Nuclear Med. Molecular Imag. 11(2), 107 (2021)

    Google Scholar 

  18. Winfield, J., et al.: Development of a diffusion-weighted MRI protocol for multicentre abdominal imaging and evaluation of the effects of fasting on measurement of apparent diffusion coefficients (adcs) in healthy liver. Br. J. Radiol. 88(1049), 20140717 (2015)

    Article  Google Scholar 

  19. Xiang, T., Yurt, M., Syed, A.B., Setsompop, K., Chaudhari, A.: Ddm2: self-supervised diffusion mri denoising with generative diffusion models. arXiv preprint arXiv:2302.03018 (2023)

Download references

Acknowledgements

This work was supported partially by the National Institute of Diabetic and Digestive and Kidney Diseases (NIDDK), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institute of Neurological Disorders and Stroke (NINDS) and National Library of Medicine (NLM) of the National Institutes of Health under award numbers R01DK125561, R21DK123569, R21EB029627, R01NS121657, R01LM013608, S10OD0250111 and by the grant number 2019056 from the United States-Israel Binational Science Foundation (BSF), and a pilot grant from National Multiple Sclerosis Society under Award Number PP-1905-34002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Vasylechko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vasylechko, S., Afacan, O., Kurugol, S. (2023). Self Supervised Denoising Diffusion Probabilistic Models for Abdominal DW-MRI. In: Karaman, M., Mito, R., Powell, E., Rheault, F., Winzeck, S. (eds) Computational Diffusion MRI. CDMRI 2023. Lecture Notes in Computer Science, vol 14328. Springer, Cham. https://doi.org/10.1007/978-3-031-47292-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47292-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47291-6

  • Online ISBN: 978-3-031-47292-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics