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Abstract. Most state-of-the-art techniques for medical image segmen-
tation rely on deep-learning models. These models, however, are often
trained on narrowly-defined tasks in a supervised fashion, which requires
expensive labeled datasets. Recent advances in several machine learning
domains, such as natural language generation have demonstrated the fea-
sibility and utility of building foundation models that can be customized
for various downstream tasks with little to no labeled data. This likely
represents a paradigm shift for medical imaging, where we expect that
foundation models may shape the future of the field. In this paper, we
consider a recently developed foundation model for medical image seg-
mentation, UniverSeg [6]. We conduct an empirical evaluation study in
the context of prostate imaging and compare it against the conventional
approach of training a task-specific segmentation model. Our results and
discussion highlight several important factors that will likely be impor-
tant in the development and adoption of foundation models for medical
image segmentation.

Keywords: Foundation model · Medical Image Segmentation · Prostate
MRI · In-context Learning

1 Introduction

Foundation models (FMs) are general-purpose models trained on extensive amounts
of data, typically in a self-supervised fashion [4]. These pre-trained models can
serve as the ‘foundation’ from which to adapt to various downstream tasks with
minimal or no supervision. From BERT [11] to GPT-4 [25], FMs have fueled
ground-breaking advances in natural language tasks. The success of large lan-
guage models inspired applications to different domains such as speech [1,26],
robotics [5,31], and vision [20,37].

Classical methods for medical image segmentation (MIS) implement carefully-
customized pipelines (e.g., FreeSurfer [14]). Pipelines might include pre-selecting
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images that include the region of interest (ROI), preprocessing the images to
reduce artifacts and/or noise, and applying image-processing algorithms like
thresholding and deformable-templates, with empirically chosen parameters. The
introduction of deep learning models simplified and improved the performance of
automatic segmentation tools [19,27]. In deep learning, the common approach in-
volves curating a set of labeled images and training a task-specific model on these
data. These models can be brittle and not generalize well to new datasets. More-
over, they demand the creation of a relatively large labeled training set for each
task. Importantly, training for each task often requires significant computational
resources and expertise. Recent studies have proposed data augmentation and
synthesis methods to address these problems but they are still early stage [3,34].

Recently, several FMs for image segmentation tasks have been proposed.
These include the Segment Anything Model (SAM) and Segment everything
everywhere all at once model (SEEM), which demonstrate great performance in
a variety of interactive segmentation tasks in natural images [20,37]. Unlike task-
specific models, these FMs are trained with prompt inputs like points and boxes
that guide the segmentation tasks. Once trained, these methods solve new tasks
without updating their weights (Figure 1). Another recent FM, UniverSeg [6], is
specifically designed to generally solve medical image segmentation tasks. The
“prompt” for UniverSeg is a set of image-label pairs, also called a support set.
The support set precisely defines the segmentation task. As one of the first FMs
developed for medical image segmentation, UniverSeg demonstrated promising
performance using limited number of image-label pairs compared to few-shot
baseline methods.

A FM for MIS offers several benefits. This approach can minimize the need
for labeled data, which can represent a significant reduction in cost for developing
automatic segmentation tools. Since these models leverage commonalities across
different annotation tasks, adapting a FM to a new task can be made to be
computationally efficient and reduce the computational burden for creating task-
specific solutions. Finally, adapting FMs to specific tasks can be made easy and
user-friendly, which will help lower barriers for clinical practitioners to build on
these technologies.

Although promising, studies have shown the limitations of the SAM FM for
MIS tasks [8,10,16,17,18,23,24,29,35]. The inferior performance of SAM on MIS
tasks is often attributed to the fact that SAM was trained with natural images.
Some works propose possible remedies, such as prompt-engineering [30,32] and
fine-tuning [15,22,33] to improve the performance. In this paper, we report the
potential and limitations of an MIS-specific FM, UniverSeg, by evaluating it for
prostate MRI segmentation.

2 Related Works

2.1 UniverSeg

UniverSeg [6] is a FM for MIS tasks that uses support sets of image-label pairs
as a prompt to define new tasks. The architecture employs a Cross-Block mech-



Empirical Analysis of a Segmentation Foundation Model 3

Fig. 1. Traditional Approach vs. Foundational Model Approach. Traditional
segmentation models like nnUNet are trained first to predict the new images. FMs
like UniverSeg and SAM use a trained model for inference of a new task. Instead of
retraining, prompts like support sets are used for UniverSeg and points and masks for
SAM (Image modified from [6])

.

anism leveraging information from the query image and support sets by averag-
ing the feature maps. UniverSeg was built using MegaMedical, which contains
53 open-access medical segmentation datasets comprising over 22,000 scans to
achieve strong performance when generalizing to held out datasets used to eval-
uate UniverSeg on unseen anatomies and tasks.

2.2 Prostate MR Segmentation

Prostate MR scans have been increasingly acquired as an initial diagnostic tool.
The ROI labels are manually segmented for the clinical workflow, for example,
biopsy guidance, and surgical/treatment planning. High-quality segmentation
labels can be beneficial but the label generation is time-consuming and demands
expertise. Thus, automatic segmentation tools can have a large clinical impact.

3 Experiments

3.1 Datasets

We consider three anatomical ROIs in the prostate that are defined in two
datasets. For each dataset, we created five sets of support/test splits. Since ob-
taining high-quality ground-truth labels is a significant bottleneck for real-world
MIS problems, we focus on the limited sample size scenario. We created sup-
port sets with randomly selected N=1, 2, 5, and 10 cases, while the other cases
were used as test set. Since each training case is a 3D volume, we extracted 2D
slices from these volumes to create the support or training sets. Unless specified
otherwise, we used 2D slices that contained the ROI. All slices are resized to
128× 128 and intensities are normalized to [0, 1].
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Prostate Gland Segmentation. We used our in-house prostate MRI dataset
(Prostate-Gland) for prostate gland segmentation, amounting to 859 anonymized
MRI scans. T2-weighted prostate MRI scans are acquired as part of prostate
cancer diagnosis.

Transitional and Peripheral Zone Segmentation. We used the publicly
available zonal anatomy segmentation labels of 204 patients [9]. The transitional
zone (TZ) and peripheral zone (PZ) labels are from the training dataset of the
PROSTATEx challenge [21] and annotated by expert radiologists, with rigor-
ous quality assessment [9]. We present two sets of results corresponding to two
different labels: PROSTATEx-TZ and PROSTATEx-PZ.

3.2 UniverSeg Inference

One of the crucial limitations of existing FMs for segmentation, including Uni-
verSeg [6], is that they are all trained in 2D. However, most medical image
segmentation tasks are in 3D, and the ROIs can be present in a small portion
of the entire volume. Thus, many 2D slices will not contain the segmentation
label. Regular prompt-based FM’s like SAM [20] struggle with this, as they are
expected to return a non-zero result for a given query and prompt. Although
UniverSeg is trained using 2D slices containing the label, UniverSeg can use
images with missing ROIs in the support set, which can be critical for 3D seg-
mentation tasks. Following the original paper, in all our experiments, we set the
maximum support set size S to 64 2D image-label pairs. Furthermore, as pre-
viously demonstrated, the quality of the result obtained with UniverSeg heavily
depends on the quality of the provided support set [6]. In our experiments, we
implement different support set selection strategies, described below.

Slice-index-aware Support Set Selection. The anatomical field-of-view along
the z-axis of prostate MR images is roughly similar across subjects. We lever-
aged this to implement a support set selection strategy that relies on the slice
index Z of the query image. For a given query image Iq, we computed weights
for each of the available labeled slices It as follows: 1/(|ZIt − ZIq | + 1), where
ZI denote the slice index in image I. Then we randomly selected S annotated
slices with a probability proportional to the pre-computed weights. This is our
default support set selection strategy, which was used for the main results.

Random Support Set Selection. As an ablation, we ignore the z-index and
randomly draw S support images from available labeled slices, where each of
these images has the same (uniform) probability.

These support set selection techniques can be restricted to slices where the
ROI is present (“ROI-inclusive”), or can consider all possible slices in the training
volumes (i.e., be agnostic to whether the ROI is present or absent in the slice,
which we refer to as “ROI-agnostic”). Because UniverSeg was trained with only
“ROI-inclusive” slices, comparing the result with “ROI-agnostic” can serve as a
good stress test of the released tool.
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3.3 nnUNet

As the baseline, we used the (2D) nnUNet, which trains the model from a ran-
dom initialization on the given labeled data using heavy data augmentation,
automatic network configuration, and ensembling (nnUNet-original) [19]. The
nnUNet model is widely considered state-of-the-art for a wide range of task-
specific segmentation tasks. For further comparison, we trained and tested the
nnUNet model with a smaller network capacity that is similar to the size of
the UniverSeg model, which we refer to as nnUNet-small (See Appendix for the
details).

3.4 Empirical Evaluation

Because high-performance machines are often unavailable in clinical and medical-
research settings, understanding the required computational resources is impor-
tant to utilize deep learning models for clinical use. As many FMs for segmen-
tation are based on Vision Transformer [13] trained with large datasets, they
involve a large number of parameters. Also, compared to classification problems,
MIS models often involve higher memory requirements. We performed compu-
tational resource analysis on nnUNet and UniverSeg by comparing the number
of parameters, training, and inference time.

As the main performance metric, we used the Dice score [12] that quantifies
the overlap between an automatic and ground-truth segmentation, and is widely
used in the field. We compare UniverSeg with nnUNet models, when different
number (N) of training cases are available. We performed ablation studies to
understand where the performance improvement occurs for the UniverSeg and
nnUNet models. We compute Dice both in 2D and in 3D. The 2D Dice results
are presented only for slices that contain the ROI, and aggregated over all slices
in the test subjects. For these results, we implemented the ROI-inclusive support
set strategy. We also present 3D Dice values, which are computed based on the
volumetric overlap in each test subject, which is in turn averaged across subjects.

4 Results

4.1 Computational Resource

Table 1 shows computational resources needed for nnUNet and UniverSeg. Uni-
verSeg has a much smaller number of parameters and faster inference runtime.
Importantly, UniverSeg does not require task-specific training – saving substan-
tial computational requirement, and obviating the need for a GPU. This substan-
tial savings makes is more applicable to clinical and clinical-research settings.
nnUNet implements five-fold cross-validation, which it in turn uses to ensemble
five models. This means that for each nnUNet, we store five models and run
five inferences. For nnUNet-orig, the automatic configuration in our experiment
yielded models with 20.6M parameters, which is 100 times larger than UniverSeg
(1.2M). Our nnUNet-small implementation had 1.3M learnable parameters, yet
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we emphasize that ensembling over cross-validation runs meant that the memory
footprint of nnUNet-small is about five times of UniverSeg. While the inference
time for the nnUNet models will not depend on the training set size (N), Uni-
verSeg’s will, since we need to ensemble over various support sets when N > 2
for better performance. However, the support set size does not affect the number
of parameters as the Cross-Block of UniverSeg averages the representations of
interaction between query and support sets at each step in the network.

nnUNet–orig. nnUNet–small UniverSeg
#Params 20.6 M × 5 folds 1.3 M × 5 folds 1.2 M
Training time (ms) 1.6× 108 1.2× 108 –
Inference time (ms) 9.7× 103 7.5× 103 6.9× 102

Table 1. Computational resource comparison. The values are averaged across ROIs
and calculated for N=1 case for all methods. All models are tested on Nvidia TITAN
Xp GPU (12 GB vRAM).

ROI Method N = 1 N = 2 N = 5 N = 10

Prostate-Gland
nnUNet-Orig 0.592± 0.088 0.714± 0.045 0.810± 0.007 0.817± 0.016
nnUNet-Small 0.520± 0.076 0.698± 0.057 0.802± 0.008 0.808± 0.019
UniverSeg 0.711± 0.008 0.769± 0.009 0.780± 0.003 0.802± 0.005

PROSTATEx-TZ
nnUNet-Orig 0.614± 0.049 0.764± 0.034 0.803± 0.006 0.821± 0.010
nnUNet-Small 0.599± 0.066 0.759± 0.033 0.800± 0.006 0.814± 0.011
UniverSeg 0.632± 0.046 0.717± 0.010 0.743± 0.012 0.754± 0.015

PROSTATEx-PZ
nnUNet-Orig 0.368± 0.111 0.589± 0.041 0.644± 0.042 0.706± 0.018
nnUNet-Small 0.333± 0.122 0.572± 0.048 0.633± 0.049 0.699± 0.016
UniverSeg 0.478± 0.056 0.570± 0.014 0.647± 0.018 0.673± 0.015

Table 2. 2D Dice scores for UniverSeg and nnUNet models. The scores are averaged
across 5 support/test splits.

4.2 Segmentation Performance

We first analyzed segmentation performance for 2D slices that contain the ROI.
Table 2 and Figure 2 show quantitative and qualitative results. Models perform
better when more training images are available. For Prostate-Gland segmenta-
tion, UniverSeg showed overall comparable results to the nnUNet models, partic-
ularly when compared with the size-matched version (nnUNet-small). Interest-
ingly, UniverSeg achieved good performance given extremely limited annotated
data, e.g., N = 1, outperforming the nnUNet models for all three tasks. The
lower scores in TZ and PZ segmentation have been previously analyzed, and
are due to the small size and difficult shape of these ROIs. For example, prior
zonal segmentation studies report varying scores ranging between 0.59 to 0.94
showing the difficulty and variability [2,7,28,36]. The nnUNet models outperform
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UniverSeg in TZ segmentation when N = 5 and N = 10 annotated examples
are available. This difference is smaller for PZ and only becomes significant at
N = 10. It is important to note that the nnUNet models use test time augmen-
tation, which may improve the UniverSeg performance.

Table 3 shows 3D Dice score values and compares two support set selection
methods. We observe that the ROI-agnostic support selection method which
includes slices that are missing the ROI, achieves significantly better results.
This is because, in 3D, there will be many slices that don’t include the ROI and
if all support examples include the ROI, then the model will likely produce false
positive labels for these slices. This highlights the importance of considering the
possibility that the query image might be lacking the ROI.

Fig. 2. Representative results. UniverSeg results are comparable to the nnUNet base-
line. When existing segmentation labels are limited, e.g., N = 1 and N = 2, UniverSeg
shows superior performance than nnUNet models (highlighted in yellow).

Ablation. We conducted ablation studies for both UniverSeg and nnUNet mod-
els to assess the impact of model configuration choices. The nnUNet with the
default configurations includes ensembling and test time augmentation. The pre-
diction results from five cross-validation models are ensembled by averaging soft-
max probabilities and at test time augmentation is applied by mirroring all axis.
As the post-processing step did not improve the accuracy on validation sets,
we did not post-process the predicted labels. We report the 2D Dice scores of
nnUNet models before the ensembling and without the test time augmentation.
For UniverSeg, we compared the different slice selection methods.
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Support Set Selection N Prostate PROSTATEx-TZ PROSTATEx-PZ

ROI-agnostic

1 0.596± 0.047 0.610± 0.060 0.428± 0.070
2 0.690± 0.035 0.706± 0.011 0.510± 0.031
5 0.716± 0.006 0.740± 0.019 0.593± 0.014
10 0.778± 0.006 0.751± 0.024 0.621± 0.009

ROI-inclusive

1 0.481± 0.035 0.579± 0.066 0.349± 0.042
2 0.488± 0.034 0.665± 0.009 0.393± 0.009
5 0.513± 0.027 0.685± 0.016 0.487± 0.013
10 0.543± 0.013 0.707± 0.019 0.493± 0.027

Table 3. 3D Dice scores for UniverSeg models with two different support set selection
strategies

.

Table 4 demonstrates the ablation results on prostate gland segmentation.
Ensembling gave all models a boost. For nnUNet models, test time augmenta-
tion also slightly enhanced the scores. The results of the support set selection
methods demonstrate the effect of support set quality. The result of ensembling
5 times with slice-index-aware (z-weighted) selection method showed superior
performance than using all images for support sets for both N = 5 and N = 10.
This, again, highlights the importance of the quality of support sets. The abla-
tion for TZ and PZ achieved the similar results (See Appendix Table 1).

ROI Method N = 1 N = 2 N = 5 N = 10

nnUNet-Orig

w/o augmentation 0.590± 0.085 0.712± 0.046 0.809± 0.007 0.815± 0.016
fold-1 0.581± 0.086 0.681± 0.060 0.798± 0.011 0.808± 0.017
fold-2 0.564± 0.095 0.710± 0.039 0.797± 0.010 0.798± 0.023
fold-3 0.590± 0.092 0.691± 0.044 0.795± 0.014 0.807± 0.025
fold-4 0.599± 0.088 0.708± 0.043 0.785± 0.006 0.804± 0.006
fold-5 0.553± 0.046 0.692± 0.046 0.790± 0.006 0.810± 0.008
default 0.592± 0.088 0.714± 0.045 0.810± 0.007 0.817± 0.016

nnUNet-Small

w/o augmentation 0.519± 0.072 0.696± 0.056 0.801± 0.007 0.807± 0.018
fold-1 0.537± 0.047 0.668± 0.074 0.784± 0.014 0.801± 0.021
fold-2 0.518± 0.068 0.686± 0.051 0.793± 0.012 0.792± 0.023
fold-3 0.512± 0.091 0.689± 0.057 0.784± 0.011 0.803± 0.011
fold-4 0.508± 0.076 0.705± 0.046 0.787± 0.015 0.792± 0.022
fold-5 0.530± 0.089 0.680± 0.045 0.782± 0.014 0.798± 0.020
default 0.520± 0.076 0.698± 0.057 0.802± 0.008 0.808± 0.019

UniverSeg

all 0.711± 0.008 0.769± 0.009 0.778± 0.006 0.799± 0.005
random – – 0.777± 0.002 0.798± 0.005
random+5 ensemble – – 0.779± 0.004 0.800± 0.006
z-weighted – – 0.777± 0.002 0.798± 0.005
z-weighted +5 ensemble – – 0.780± 0.003 0.802± 0.005

Average # of images available for support set 14.0± 2.1 31.4± 6.5 83.4± 2.9 148.0± 3.7

Table 4. 2D Dice scores from the ablation study conducted for the prostate segmen-
tation task.

4.3 Conclusion

Based on the successful employment of FMs in multiple domains, we believe
FMs will instigate a paradigm shift for medical imaging. In this paper, we eval-
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uated the FM for MIS, called UniverSeg, and discussed its performance and
adaptability to prostate segmentation tasks.

As future directions, we see several limitations and opportunities in a FM
for MIS. First, FMs for 3D MIS are needed, and promise to be impactful. Many
medical image data is acquired in 3D and the existing FMs are based on 2D
slices extracted from the 3D volumes. Previous studies have shown superior
performance when designed for 3D compared to 2D data. FMs like UniverSeg,
where the model can account for images without ROI labels, should be further
studied for 3D tasks. Second, adaptation of FMs should be further studied.
Prostate gland and TZ were comparably easier segmentation tasks then the PZ.
Different approaches would include but not be limited to ensembling different
models, e.g., ensembling nnUNet and UniverSeg results, prompt engineering, and
finetuning. Third, clinical practitioners can easily adapt FMs in their workflows,
as it obviates the need to fine-tune. For prostate MRI, some practitioners use
an automated prostate gland segmentation tool from the software DynaCAD5.
Even though the segmentation needs to be reviewed and edited, the software
saves a lot of time over manual segmentation. An FM like UniverSeg, can be
used for various segmentation tasks even when limited labels are available.
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Appendix

1 Implementation details of nnUNet

We used the two 2D nnUNet models with the different number of parameters.
The first nnUNet (nnUNet-original) follows the automatic network configuration
of original paper [1] and the second nnUNet model (nnUNet-small) is a smaller
network capacity that matches to the size of the UniverSeg model (1.2M param-
eters) . For our nnUNet-small implementation had 1.3M learnable parameters
by setting the base number of feature maps to 16 and the maximum number of
features to 96.

For both models, we followed the training parameters provided in the original
nnUNet paper [1]. A five-fold cross validation is applied. Each model is trained
from a random initialization using heavy data augmentation and ensembling.
The data augmentation includes rotation, scaling, mirroring, Gaussian Noise,
Gaussian Blur, brightness, contrast, simulation of low resolution, and gamma
augmentation. The models are trained for 1,000 epochs using the sum of cross-
entropy and Dice loss. The further details of augmentation and training schedule
parameters can be found in Supplementary Note 4 and Method Section of the
nnUNet paper [1].
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2 Table

Method N = 1 N = 2 N = 5 N = 10

ROI: TZ

nnUNet-Orig

wo-augmentation 0.612± 0.051 0.762± 0.035 0.801± 0.005 0.818± 0.010
fold-0 0.581± 0.064 0.754± 0.028 0.787± 0.010 0.814± 0.008
fold-1 0.603± 0.055 0.757± 0.029 0.783± 0.015 0.807± 0.018
fold-2 0.609± 0.032 0.750± 0.033 0.786± 0.009 0.807± 0.013
fold-3 0.605± 0.053 0.756± 0.033 0.793± 0.011 0.812± 0.009
fold-4 0.624± 0.037 0.751± 0.036 0.794± 0.003 0.811± 0.009
default 0.614± 0.049 0.764± 0.034 0.803± 0.006 0.821± 0.010

nnUNet-Small

wo-augmentation 0.601± 0.065 0.757± 0.033 0.797± 0.006 0.812± 0.010
fold-0 0.579± 0.073 0.747± 0.031 0.780± 0.007 0.805± 0.010
fold-1 0.594± 0.052 0.750± 0.029 0.776± 0.018 0.804± 0.014
fold-2 0.606± 0.047 0.749± 0.030 0.787± 0.008 0.797± 0.018
fold-3 0.579± 0.077 0.748± 0.032 0.785± 0.011 0.807± 0.011
fold-4 0.603± 0.048 0.742± 0.040 0.786± 0.004 0.803± 0.009
default 0.599± 0.066 0.759± 0.033 0.800± 0.006 0.814± 0.011

UniverSeg

all 0.632± 0.046 0.717± 0.010 0.738± 0.015 0.745± 0.015
random – – 0.733± 0.015 0.739± 0.014
random+5 ensemble – – 0.736± 0.015 0.743± 0.014
z-weighted – – 0.740± 0.012 0.751± 0.015
z-weighted+5 ensemble – – 0.743± 0.012 0.754± 0.015

ROI: PZ

nnUNet-Orig

wo-augmentation 0.369± 0.107 0.587± 0.040 0.640± 0.041 0.702± 0.017
fold-0 0.380± 0.109 0.592± 0.022 0.635± 0.037 0.696± 0.019
fold-1 0.373± 0.090 0.535± 0.076 0.630± 0.033 0.700± 0.020
fold-2 0.360± 0.122 0.589± 0.029 0.621± 0.028 0.695± 0.010
fold-3 0.361± 0.094 0.578± 0.046 0.654± 0.044 0.682± 0.026
fold-4 0.385± 0.099 0.593± 0.027 0.620± 0.057 0.697± 0.015
default 0.368± 0.111 0.589± 0.041 0.644± 0.042 0.706± 0.018

nnUNet-Small

wo-augmentation 0.335± 0.120 0.569± 0.047 0.627± 0.050 0.694± 0.016
fold-0 0.344± 0.127 0.585± 0.039 0.621± 0.033 0.692± 0.015
fold-1 0.370± 0.103 0.525± 0.073 0.624± 0.048 0.679± 0.016
fold-2 0.336± 0.129 0.554± 0.034 0.611± 0.042 0.686± 0.021
fold-3 0.338± 0.094 0.563± 0.045 0.625± 0.053 0.678± 0.015
fold-4 0.335± 0.108 0.574± 0.044 0.619± 0.054 0.688± 0.023
default 0.333± 0.122 0.572± 0.048 0.633± 0.049 0.699± 0.016

UniverSeg

all 0.478± 0.056 0.570± 0.014 0.650± 0.019 0.672± 0.012
random – – 0.638± 0.019 0.657± 0.011
random+5 ensemble – – 0.647± 0.019 0.668± 0.012
z-weighted – – 0.640± 0.018 0.664± 0.014
z-weighted+5 ensemble – – 0.647± 0.018 0.673± 0.015

Table 1. 2D Dice scores from the ablation study conducted for transitional zone (TZ)
and peripheral zone (PZ) segmentation tasks
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