Skip to main content

Fed-CoT: Co-teachers for Federated Semi-supervised MS Lesion Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 Workshops (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14393))

  • 1396 Accesses

Abstract

Federated learning (FL) is an emerging technique for obtaining a global model while ensuring the data privacy of each client, which is particularly significant in protecting the patients’ privacy when conducting medical image analysis. However, previous FL methods for medical images typically assume a fully supervised setting where each client’s data is fully annotated, disregarding the fact that obtaining such extensive annotations may present significant obstacles due to the need for specialized expertise and the associated overhead costs. In this work, we focus on lesion segmentation for brain MRI images and propose a federated semi-supervised framework to address this problem. Formally, we introduce a Federated Co-Teachers algorithm (Fed-CoT) that extends the prevalent Mean Teacher algorithm into the federated learning framework, and demonstrate its effectiveness. Particularly, in Fed-CoT, two teacher models, namely sync-teacher and async-teacher, which capitalize on different weight updating schemes are leveraged to provide informative consistency regularization and to avoid overfitting to the noise of targets generated by a single teacher model. Our experimental results validate the merits of our proposed method and suggest that the federated learning model can benefit from extra data even without annotations. This approach relaxes the requirement for client participation in federated learning, making it easier to deploy in real applications.

G. Zhan and J. Deng—Contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bai, W., et al.: Semi-supervised learning for network-based cardiac MR image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 253–260. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_29

    Chapter  Google Scholar 

  2. Bortsova, G., Dubost, F., Hogeweg, L., Katramados, I., de Bruijne, M.: Semi-supervised medical image segmentation via learning consistency under transformations. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 810–818. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_90

    Chapter  Google Scholar 

  3. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  4. Commowick, O., et al.: Objective evaluation of multiple sclerosis lesion segmentation using a data management and processing infrastructure. Sci. Rep. 8(1), 13650 (2018)

    Article  Google Scholar 

  5. Commowick, O., et al.: Multiple sclerosis lesions segmentation from multiple experts: the MICCAI 2016 challenge dataset. Neuroimage 244, 118589 (2021)

    Article  Google Scholar 

  6. De Bruijne, M.: Machine learning approaches in medical image analysis: from detection to diagnosis (2016)

    Google Scholar 

  7. French, G., Laine, S., Aila, T., Mackiewicz, M., Finlayson, G.: Semi-supervised semantic segmentation needs strong, varied perturbations. arXiv preprint arXiv:1906.01916 (2019)

  8. Hesamian, M.H., Jia, W., He, X., Kennedy, P.: Deep learning techniques for medical image segmentation: achievements and challenges. J. Digit. Imaging 32, 582–596 (2019)

    Article  Google Scholar 

  9. Lee, D.H., et al.: Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks. In: Workshop on Challenges in Representation Learning, ICML, vol. 3, p. 896 (2013)

    Google Scholar 

  10. Li, T., Sahu, A.K., Talwalkar, A., Smith, V.: Federated learning: challenges, methods, and future directions. IEEE Signal Process. Mag. 37(3), 50–60 (2020)

    Article  Google Scholar 

  11. Li, W., et al.: Privacy-preserving federated brain tumour segmentation. In: Suk, H.-I., Liu, M., Yan, P., Lian, C. (eds.) MLMI 2019. LNCS, vol. 11861, pp. 133–141. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32692-0_16

    Chapter  Google Scholar 

  12. Nie, D., Gao, Y., Wang, L., Shen, D.: ASDNet: attention based semi-supervised deep networks for medical image segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 370–378. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_43

    Chapter  Google Scholar 

  13. Qi, X., Yang, G., He, Y., Liu, W., Islam, A., Li, S.: Contrastive re-localization and history distillation in federated CMR segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention-MICCAI 2022: 25th International Conference, Singapore, 18–22 September 2022, Proceedings, Part V, pp. 256–265. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16443-9_25

  14. Rieke, N., et al.: The future of digital health with federated learning. NPJ Digit. Med. 3(1), 119 (2020)

    Article  Google Scholar 

  15. Tajbakhsh, N., Jeyaseelan, L., Li, Q., Chiang, J.N., Wu, Z., Ding, X.: Embracing imperfect datasets: a review of deep learning solutions for medical image segmentation. Med. Image Anal. 63, 101693 (2020)

    Article  Google Scholar 

  16. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  17. Treadaway, K., et al.: Factors that influence adherence with disease-modifying therapy in MS. J. Neurol. 256, 568–576 (2009)

    Article  Google Scholar 

  18. Wu, Y., He, K.: Group normalization. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_1

    Chapter  Google Scholar 

  19. Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: CutMix: regularization strategy to train strong classifiers with localizable features. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6023–6032 (2019)

    Google Scholar 

  20. Zhang, H., Oguz, I.: Multiple sclerosis lesion segmentation - a survey of supervised CNN-based methods. In: Crimi, A., Bakas, S. (eds.) BrainLes 2020. LNCS, vol. 12658, pp. 11–29. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72084-1_2

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenyu Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhan, G., Deng, J., Cabezas, M., Ouyang, W., Barnett, M., Wang, C. (2023). Fed-CoT: Co-teachers for Federated Semi-supervised MS Lesion Segmentation. In: Celebi, M.E., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 Workshops . MICCAI 2023. Lecture Notes in Computer Science, vol 14393. Springer, Cham. https://doi.org/10.1007/978-3-031-47401-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47401-9_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47400-2

  • Online ISBN: 978-3-031-47401-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics