Skip to main content

Query Re-Training for Modality-Gnostic Incomplete Multi-modal Brain Tumor Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 Workshops (MICCAI 2023)

Abstract

Although Magnetic Resonance Imaging (MRI) is crucial for segmenting brain tumors, it frequently lacks specific modalities in clinical practice, which limits prediction performance. In current methods, training involves multiple stages, and encoders are different for each modality, which means hybrid modules must be manually designed to incorporate multiple modalities’ features, lacking interaction across modalities. To ameliorate this problem, we propose a transformer-based end-to-end model with just one auto-encoder to provide interactive computations in any modality missing condition. Considering that it is challenging for a single model to perceive several missing states, we introduce learnable modality combination queries to assist the transformer decoder in adjusting to the incomplete multi-modal segmentation. Furthermore, to address the suboptimization issue of the Transformer under small datasets, we adopt a re-training mechanism to facilitate convergence to a better local minimum. The extensive experiments on the BraTS2018 and BraTS2020 datasets demonstrate that our method outperforms the current state-of-the-art methods for incomplete multi-modal brain tumor segmentation on average.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cao, H., et al.: Swin-Unet: Unet-like pure transformer for medical image segmentation. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds.) ECCV 2022. LNCS, vol. 13803, pp. 205–218. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-25066-8_9

    Chapter  Google Scholar 

  2. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, End-to-end object detection with transformers (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  3. Chen, C., Dou, Q., Jin, Y., Chen, H., Qin, J., Heng, P.-A.: Robust multimodal brain tumor segmentation via feature disentanglement and gated fusion. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 447–456. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_50

    Chapter  Google Scholar 

  4. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)

    Article  Google Scholar 

  5. Ding, Y., Yu, X., Yang, Y.: RFNet: region-aware fusion network for incomplete multi-modal brain tumor segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3975–3984 (2021)

    Google Scholar 

  6. Dorent, R., Joutard, S., Modat, M., Ourselin, S., Vercauteren, T.: Hetero-modal variational encoder-decoder for joint modality completion and segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 74–82. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_9

    Chapter  Google Scholar 

  7. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale (2020). https://doi.org/10.48550/ARXIV.2010.11929. https://arxiv.org/abs/2010.11929

  8. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: NNU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  9. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the International Conference on Learning Representations (2015)

    Google Scholar 

  10. Liu, H., et al.: ModDrop++: a dynamic filter network with intra-subject co-training for multiple sclerosis lesion segmentation with missing modalities (2022). https://doi.org/10.48550/ARXIV.2203.04959. https://arxiv.org/abs/2203.04959

  11. Liu, Y., Fan, L., et al.: Incomplete multi-modal representation learning for Alzheimer’s disease diagnosis. Med. Image Anal. 69, 101953 (2021)

    Article  MathSciNet  Google Scholar 

  12. Liu, Z., Lin, Y., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: IEEE International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  13. Peiris, H., Hayat, M., Chen, Z., Egan, G., Harandi, M.: A robust volumetric transformer for accurate 3D tumor segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) ECCV 2022, Part V. LNCS, vol. 13435, pp. 162–172. Springer, Cham (2022)

    Google Scholar 

  14. Qiu, Y., Chen, D., Yao, H., Xu, Y., Wang, Z.: Scratch each other’s back: Incomplete multi-modal brain tumor segmentation via category aware group self-support learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2023)

    Google Scholar 

  15. Qiu, Y., Zhao, Z., Yao, H., Chen, D., Wang, Z.: Modal-aware visual prompting for incomplete multi-modal brain tumor segmentation. In: Proceedings of the 31th ACM International Conference on Multimedia (2023)

    Google Scholar 

  16. Qu, M., et al.: SiRi: a simple selective retraining mechanism for transformer-based visual grounding. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022, Part XXXV. LNCS, vol. 13695, pp. 546–562. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19833-5_32

    Chapter  Google Scholar 

  17. Tang, Y., et al.: Self-supervised pre-training of swin transformers for 3d medical image analysis (2021). https://doi.org/10.48550/ARXIV.2111.14791. https://arxiv.org/abs/2111.14791

  18. Valanarasu, J.M.J., Yasarla, R., et al.: TransWeather: transformer-based restoration of images degraded by adverse weather conditions. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2353–2363 (2022)

    Google Scholar 

  19. Vaswani, A., Shazeer, N., et al.: Attention is all you need. In: Proceedings Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  20. Wang, L., Lee, C.Y., et al.: Training deeper convolutional networks with deep supervision. arXiv preprint arXiv:1505.02496 (2015)

  21. Wang, S., et al.: LT-Net: label transfer by learning reversible voxel-wise correspondence for one-shot medical image segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9162–9171 (2020)

    Google Scholar 

  22. Zhang, Y., He, N., et al.: mmFormer: multimodal medical transformer for incomplete multimodal learning of brain tumor segmentation. In: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 107–117 (2022)

    Google Scholar 

  23. Zhang, Y., et al.: Modality-aware mutual learning for multi-modal medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021, Part I. LNCS, vol. 12901, pp. 589–599. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_56

    Chapter  Google Scholar 

  24. Zhao, Z., Yang, H., et al.: Modality-adaptive feature interaction for brain tumor segmentation with missing modalities. In: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 183–192 (2022)

    Google Scholar 

  25. Zhou, C., Ding, C., Lu, Z., Wang, X., Tao, D.: One-pass multi-task convolutional neural networks for efficient brain tumor segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018, Part III. LNCS, vol. 11072, pp. 637–645. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_73

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, D., Qiu, Y., Wang, Z. (2023). Query Re-Training for Modality-Gnostic Incomplete Multi-modal Brain Tumor Segmentation. In: Woo, J., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 Workshops. MICCAI 2023. Lecture Notes in Computer Science, vol 14394. Springer, Cham. https://doi.org/10.1007/978-3-031-47425-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47425-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47424-8

  • Online ISBN: 978-3-031-47425-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics