Skip to main content

Graph-Based Counterfactual Causal Inference Modeling for Neuroimaging Analysis

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 Workshops (MICCAI 2023)

Abstract

Alzheimer’s disease (AD) is a neurodegenerative disorder that is beginning with amyloidosis, followed by neuronal loss and deterioration in structure, function, and cognition. The accumulation of amyloid-\(\beta \) in the brain, measured through 18F-florbetapir (AV45) positron emission tomography (PET) imaging, has been widely used for early diagnosis of AD. However, the relationship between amyloid-\(\beta \) accumulation and AD pathophysiology remains unclear, and causal inference approaches are needed to uncover how amyloid-\(\beta \) levels can impact AD development. In this paper, we propose a Graph-VCNet for estimating the individual treatment effect with continuous treatment levels using a graph convolutional neural network. We highlight the potential of causal inference approaches, including Graph-VCNet, for measuring the regional causal connections between amyloid-\(\beta \) accumulation and AD pathophysiology, which may serve as a robust tool for early diagnosis and tailored care.

H. Dai—Contributed equally to this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. An, L., et al.: Multi-level canonical correlation analysis for standard-dose pet image estimation. IEEE Trans. Image Process. 25(7), 3303–3315 (2016). https://doi.org/10.1109/TIP.2016.2567072

  2. Bica, I., Jordon, J., van der Schaar, M.: Estimating the effects of continuous-valued interventions using generative adversarial networks. Adv. Neural. Inf. Process. Syst. 33, 16434–16445 (2020)

    Google Scholar 

  3. Camus, V., et al.: Using pet with 18f-av-45 (florbetapir) to quantify brain amyloid load in a clinical environment. Eur. J. Nucl. Med. Molecul. Imag. 39(4), 621–631 (2012)

    Google Scholar 

  4. Chipman, H.A., George, E.I., McCulloch, R.E.: Bart: Bayesian additive regression trees. Annal. Appl. Statist. 4(1), 266–298 (2010)

    MathSciNet  Google Scholar 

  5. Chu, Z., Rathbun, S.L., Li, S.: Matching in selective and balanced representation space for treatment effects estimation. In: Proceedings of the 29th ACM International Conference on Information and Knowledge Management, pp. 205–214 (2020)

    Google Scholar 

  6. Ge, Q., et al.: Tracer-specific reference tissues selection improves detection of 18f-fdg, 18f-florbetapir, and 18f-flortaucipir pet SUVR changes in Alzheimer’s disease. Hum. Brain Mapp. 43(7), 2121–2133 (2022)

    Google Scholar 

  7. Hansen, B.B.: The prognostic analogue of the propensity score. Biometrika 95(2), 481–488 (2008)

    Article  MathSciNet  Google Scholar 

  8. Hassanpour, N., Greiner, R.: Counterfactual regression with importance sampling weights. In: IJCAI, pp. 5880–5887 (2019)

    Google Scholar 

  9. Hirano, K., Imbens, G.W.: The propensity score with continuous treatments. In: Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives, vol. 226164, pp. 73–84 (2004)

    Google Scholar 

  10. Jack, C.R., et al.: Rates of \(\upbeta \)-amyloid accumulation are independent of hippocampal neurodegeneration. Neurology 82(18), 1605 (2014)

    Google Scholar 

  11. Johansson, F., Shalit, U., Sontag, D.: Learning representations for counterfactual inference. In: International Conference on Machine Learning, pp. 3020–3029. PMLR (2016)

    Google Scholar 

  12. Landau, S.M., et al.: The Alzheimer’s disease neuroimaging initiative: amyloid pet imaging in Alzheimer’s disease: a comparison of three radiotracers. Eur. J. Nucl. Med. Mol. Imaging 41, 1398–1407 (2014)

    Google Scholar 

  13. Li, Q., et al.: The Alzheimer’s disease neuroimaging initiative: Aberrant connectivity in mild cognitive impairment and Alzheimer disease revealed by multimodal neuroimaging data. Neurodegener. Dis. 18, 5–18 (2018)

    Google Scholar 

  14. Li, Q., et al.: Multi-modal discriminative dictionary learning for Alzheimer’s disease and mild cognitive impairment. Comput. Methods Prog. Biomed. 150, 1–8 (2017)

    Google Scholar 

  15. Miller, M.B., et al.: Somatic genomic changes in single Alzheimer’s disease neurons. Nature 604 (2022)

    Google Scholar 

  16. Morgan, S.L., Winship, C.: Counterfactuals and Causal Inference. Cambridge University Press (2015)

    Google Scholar 

  17. Nie, L., Ye, M., Liu, Q., Nicolae, D.: Vcnet and functional targeted regularization for learning causal effects of continuous treatments. arXiv preprint arXiv:2103.07861 (2021)

  18. Ossenkoppele, R., et al.: Amyloid and tau pet-positive cognitively unimpaired individuals are at high risk for future cognitive decline. Nat. Med. 28, 2381–2387 (2022)

    Google Scholar 

  19. Rubin, D.B.: Estimating causal effects of treatments in randomized and nonrandomized studies. J. Educ. Psychol. 66(5), 688 (1974)

    Article  Google Scholar 

  20. Schwab, P., Linhardt, L., Bauer, S., Buhmann, J.M., Karlen, W.: Learning counterfactual representations for estimating individual dose-response curves. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 5612–5619 (2020)

    Google Scholar 

  21. Shalit, U., Johansson, F.D., Sontag, D.: Estimating individual treatment effect: generalization bounds and algorithms. In: International Conference on Machine Learning, pp. 3076–3085. PMLR (2017)

    Google Scholar 

  22. Stuart, E.A.: Matching methods for causal inference: a review and a look forward. Statist. Sci. Rev. J. Inst. Math. Statist. 25(1), 1 (2010)

    MathSciNet  Google Scholar 

  23. Wager, S., Athey, S.: Estimation and inference of heterogeneous treatment effects using random forests. J. Am. Stat. Assoc. 113(523), 1228–1242 (2018)

    Article  MathSciNet  Google Scholar 

  24. Yao, L., Li, S., Li, Y., Huai, M., Gao, J., Zhang, A.: Representation learning for treatment effect estimation from observational data. Adv. Neural Inf. Process. Syst. 31 (2018)

    Google Scholar 

  25. Yao, L., et al.: Concept-level model interpretation from the causal aspect. IEEE Trans. Knowl. Data Eng. (2022)

    Google Scholar 

  26. Zhang, Y., Zhang, H., Lipton, Z.C., Li, L.E., Xing, E.: Exploring transformer backbones for heterogeneous treatment effect estimation. In: NeurIPS ML Safety Workshop (2022)

    Google Scholar 

  27. Zhu, X., Suk, H.-I., Shen, D.: Multi-modality canonical feature selection for Alzheimer’s disease diagnosis. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8674, pp. 162–169. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10470-6_21

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dai, H. et al. (2023). Graph-Based Counterfactual Causal Inference Modeling for Neuroimaging Analysis. In: Woo, J., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 Workshops. MICCAI 2023. Lecture Notes in Computer Science, vol 14394. Springer, Cham. https://doi.org/10.1007/978-3-031-47425-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47425-5_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47424-8

  • Online ISBN: 978-3-031-47425-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics