Skip to main content

Noisy-Consistent Pseudo Labeling Model for Semi-supervised Skin Lesion Classification

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 Workshops (MICCAI 2023)

Abstract

Automated classification of skin lesions in dermoscopy images has the potential to significantly improve survival rates and reduce the risk of death for skin cancer patients. However, existing supervised learning models heavily depend on well-annotated dermoscopy training data, which is expensive and labor-intensive to obtain. This paper addresses this issue by proposing a semi-supervised framework called Noisy Consistent Pseudo Labeling (NCPL), which only utilizes less annotated images with many unlabeled raw data. The NCPL framework consists of two components: the Noisy-Consistent Sample Learning(NCSL) module to remove low-confidence images, and the Attentive Clustered Feature Integration (ACFI) module, incorporating an uncertainty-aware attention mechanism. Specifically, the NCSL module is introduced to filter and generate reliable pseudo-labels for unlabeled skin images, with excellent capability of removing noisy samples. Additionally, the ACFI module integrates high-dimensional representations of original lesion images in an attentive manner, assisted with the annotated data. By focusing the representative samples and removing noisy images, the NCPL approach performs outstanding experimental results, demonstrating the superiority of the NCPL framework in semi-supervised skin lesion classification task.

Q. Li—Supported by organization x.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Perez, M., Abisaad, J.A., Rojas, K.D., Marchetti, M.A., Jaimes, N.: Skin cancer: primary, secondary, and tertiary prevention. Part I. J. Am. Acad. Dermatol. 87(2), 255–268 (2022)

    Article  Google Scholar 

  2. Gregoor, A.M.S., et al.: An artificial intelligence based app for skin cancer detection evaluated in a population based setting. NPJ Digital Med. 6(1), 90 (2023)

    Article  Google Scholar 

  3. Yinhao, W., Chen, B., Zeng, A., Pan, D., Wang, R., Zhao, S.: Skin cancer classification with deep learning: a systematic review. Front. Oncol. 12, 893972 (2022)

    Article  Google Scholar 

  4. Zhou, Y., et al.: Multi-site cross-organ calibrated deep learning (MUSCLD): automated diagnosis of non-melanoma skin cancer. Med. Image Anal. 84, 102702 (2023)

    Article  Google Scholar 

  5. Nakai, K., Chen, Y.-W., Han, X.-H.: Enhanced deep bottleneck transformer model for skin lesion classification. Biomed. Signal Process. Control 78, 103997 (2022)

    Article  Google Scholar 

  6. Mishra, S., Zhang, Y., Zhang, L., Zhang, T., Hu, X.S., Chen, D.Z.: Data-driven deep supervision for skin lesion classification. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13431, pp. 721–731. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16431-6_68

    Chapter  Google Scholar 

  7. Wang, L., Zhang, L., Shu, X., Yi, Z.: Intra-class consistency and inter-class discrimination feature learning for automatic skin lesion classification. Med. Image Anal. 85, 102746 (2023)

    Article  Google Scholar 

  8. Lie, J., et al.: Flexible sampling for long-tailed skin lesion classification. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13433, pp. 462–471. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16437-8_44

    Chapter  Google Scholar 

  9. He, X., Tan, E.-L., Bi, H., Zhang, X., Zhao, S., Lei, B.: Fully transformer network for skin lesion analysis. Med. Image Anal. 77, 102357 (2022)

    Article  Google Scholar 

  10. Song, L., Wang, H., Wang, Z.J.: Decoupling multi-task causality for improved skin lesion segmentation and classification. Pattern Recognition 133, 108995 (2023)

    Article  Google Scholar 

  11. Wang, Y., Wang, Y., Cai, J., Lee, T.K., Miao, C., Wang, Z.J.: SSD-KD: a self-supervised diverse knowledge distillation method for lightweight skin lesion classification using dermoscopic images. Med. Image Anal. 84, 102693 (2023)

    Article  Google Scholar 

  12. Zhou, S., et al.: FixMatch-LS: semi-supervised skin lesion classification with label smoothing. Biomed. Signal Process. Control 84, 104709 (2023)

    Article  Google Scholar 

  13. Gao, Z., et al.: A semi-supervised multi-task learning framework for cancer classification with weak annotation in whole-slide images. Med. Image Anal. 83, 102652 (2023)

    Article  Google Scholar 

  14. Zhou, S., et al.: ReFixMatch-LS: reusing pseudo-labels for semi-supervised skin lesion classification. Med. Biol. Eng. Comput. 61(5), 1033–1045 (2023)

    Article  Google Scholar 

  15. Zeng, L., et al.: Advancements in nanoparticle-based treatment approaches for skin cancer therapy. Mol. Can. 22(1), 10 (2023)

    Article  Google Scholar 

  16. Tschandl, P., Rosendahl, C., Kittler, H.: The ham10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 5(1), 1–9 (2018)

    Article  Google Scholar 

  17. Chang, C.H., Wang, W.E., Hsu, F.Y., Chen, R.J., Chang, H.C.: AI HAM 10000 database to assist residents in learning differential diagnosis of skin cancer. In: 2022 IEEE 5th Eurasian Conference on Educational Innovation (ECEI), pp. 1–3. IEEE (2022)

    Google Scholar 

  18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  19. Bdair, T., Navab, N., Albarqouni, S.: FedPerl: semi-supervised peer learning for skin lesion classification. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 336–346. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_32

    Chapter  Google Scholar 

  20. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learni. Res. 9(11), 2579–2605 (2008)

    Google Scholar 

  21. Jung, H., Oh, Y.: Towards better explanations of class activation mapping. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1336–1344 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, Q., Li, S., Li, Z., Min, X., Li, Q. (2023). Noisy-Consistent Pseudo Labeling Model for Semi-supervised Skin Lesion Classification. In: Woo, J., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 Workshops. MICCAI 2023. Lecture Notes in Computer Science, vol 14394. Springer, Cham. https://doi.org/10.1007/978-3-031-47425-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47425-5_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47424-8

  • Online ISBN: 978-3-031-47425-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics