Skip to main content

Leveraging Contrastive Learning with SimSiam for the Classification of Primary and Secondary Liver Cancers

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 Workshops (MICCAI 2023)

Abstract

Accurate liver cancer classification is essential, as it substantially influences the selection of effective treatment strategies and impacts patient prognosis. Convolutional neural network (CNN) classifiers typically require extensive labeled datasets for training to attain decent performance. However, the process of obtaining labeled data through manual labeling is time-consuming, potentially biased, and costly when applied to large datasets. This study utilizes the Simple Siamese (SimSiam) contrastive self-supervised learning approach to enhance the classification of liver tumours, especially considering the limited availability of labeled computed tomography (CT) scans of liver cancer. We integrate SimSiam with three baseline CNN-based classifiers - Inception, Xception, and ResNet152 - and pretrain them with two loss functions: mean squared error (MSE) and cosine similarity (COS). Our findings show consistent improvements for three classifiers compared to the baseline models. Specifically, the ResNet152 model exhibits the highest performance among the evaluated networks. With MSE and COS losses, the classification accuracy for ResNet152 improves by 1.27% and 2.53%, respectively. The classification accuracy of the Inception model improves by 3.95% and 5.26%. Similarly, Xception’s validation accuracy demonstrates an increase of 2.60% with both loss functions, compared to the baseline models. We validate our pipeline via our multi-resolution in-house abdominal CT scans of primary and secondary liver cancers, including 155 patients with hepatocellular carcinoma, 198 patients with colorectal liver metastases, and 107 patients with intrahepatic cholangiocarcinoma. Source code available at:https://github.com/Ramtin-Mojtahedi/SimSiam-LiverCancer-CL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Choi, J.Y., Lee, J.-M., Sirlin, C.B.: CT and MR imaging diagnosis and staging of hepatocellular carcinoma: part I. Development, growth, and spread: key pathologic and imaging aspects. Radiology, 272, 635–654 (2014)

    Google Scholar 

  2. Dar, A.R., McKillop, I., Vickress, J., Lock, M., Yartsev, S.: Prognostic significance of tumour location for liver cancer radiotherapy. Cureus, 10(12), e3714 (2018)

    Google Scholar 

  3. Histed, S.N., Lindenberg, M.L., Mena, E., Turkbey, B., Choyke, P.L., Kurdziel, K.A.: Review of functional/anatomical imaging in oncology. Nucl. Med. Commun. 33, 349–361 (2012)

    Article  Google Scholar 

  4. Chen, C., et al.: Classification of Multi-Differentiated Liver Cancer Pathological Images Based on Deep Learning Attention Mechanism (2022)

    Google Scholar 

  5. Types of Liver Cancer: Cholangiocarcinoma, HCC and More. https://www.cancercenter.com/cancer-types/liver-cancer/types. Accessed 08 Mar 2023

  6. Chidambaranathan-Reghupaty, S., Fisher, P.B., Sarkar, D.: Hepatocellular carcinoma (HCC): epidemiology, etiology and molecular classification. Adv. Cancer Res. 149, 1–61 (2021)

    Google Scholar 

  7. El-Diwany, R., Pawlik, T.M., Ejaz, A.: Intrahepatic cholangiocarcinoma. Surg. Oncol. Clin. N. Am. 28, 587–599 (2019)

    Article  Google Scholar 

  8. Martin, J., et al.: Colorectal liver metastases: current management and future perspectives. World J. Clin. Oncol. 11, 761–808 (2020)

    Article  Google Scholar 

  9. Hamghalam, M., Do, R., Simpson, A.L.: Attention-Based CT Scan Interpolation for Lesion Segmentation of Colorectal Liver Metastases. Medical Imaging 2023: Biomedical Applications in Molecular, Structural, and Functional Imaging (2023)

    Google Scholar 

  10. Mojtahedi, R., Hamghalam, M., Do, R.K., Simpson, A.L.: Towards optimal patch size in vision transformers for Tumour segmentation. In: Multiscale Multimodal Medical Imaging, pp. 110–120 (2022)

    Google Scholar 

  11. Mojtahedi, R., Hamghalam, M., Simpson, A.L.: Multi-modal brain Tumour segmentation using transformer with optimal patch size. In: BrainLesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, pp. 195–204 (2023)

    Google Scholar 

  12. Heaton, J.: Ian Goodfellow, Yoshua Bengio, and Aaron Courville: deep learning. Genet. Program Evolvable Mach. 19, 305–307 (2017)

    Article  Google Scholar 

  13. Alzubaidi, L., et al.: Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J. Big Data, 8(1), 53 (2021)

    Google Scholar 

  14. Villanueva, A.: Hepatocellular carcinoma. N. Engl. J. Med. 380, 1450–1462 (2019)

    Article  Google Scholar 

  15. Rizvi, S., Khan, S.A., Hallemeier, C.L., Kelley, R.K., Gores, G.J.: Cholangiocarcinoma - evolving concepts and therapeutic strategies. Nat. Rev. Clin. Oncol. 15, 95–111 (2017)

    Article  Google Scholar 

  16. Alanazi, A.: Using machine learning for healthcare challenges and opportunities. Inform. Med. Unlocked 30, 100924 (2022)

    Article  Google Scholar 

  17. Solatidehkordi, Z., Zualkernan, I.: Survey on recent trends in medical image classification using semi-supervised learning. Appl. Sci. 12, 12094 (2022)

    Article  Google Scholar 

  18. Reed, C.J., et al.: Self-supervised pretraining improves self-supervised pretraining. In: 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) (2022)

    Google Scholar 

  19. Yasaka, K., Akai, H., Abe, O., Kiryu, S.: Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast-enhanced CT: a preliminary study. Radiology 286, 887–896 (2018)

    Article  Google Scholar 

  20. Hamm, C.A., et al.: deep learning for liver tumour diagnosis Part I: development of a convolutional neural network classifier for multi-phasic MRI. Eur. Radiol. 29, 3338–3347 (2019)

    Article  Google Scholar 

  21. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  22. Chollet, F.: Xception: Deep Learning with Depthwise Separable Convolutions. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  23. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  24. Huang, S.-C., Pareek, A., Jensen, M., Lungren, M.P., Yeung, S., Chaudhari, A.S.: Self-Supervised Learning for Medical Image Classification: A Systematic Review and Implementation Guidelines. npj Digit. Med. 6, 74 (2023)

    Google Scholar 

  25. Del Pup, F., Atzori, M.: Applications of Self-Supervised Learning to Biomedical Signals: Where Are We Now. (2023)

    Google Scholar 

  26. Grill, J.B., et al.: Bootstrap your own latent: a new approach to self-supervised learning. In: NIPS 2020: Proceedings of the 34th International Conference on Neural Information Processing Systems, pp. 21271–21284 (2020)

    Google Scholar 

  27. Chen, S., Kornblith, S., Hinton, G.: Simple Contrastive Learning of Visual Representations. arXiv:2002.05709 (2020)

  28. Van den Oord, A., Li, Y., Vinyals, O.: Representation Learning with Contrastive Predictive Coding. arXiv:1807.03748 (2018)

  29. Chen, X., He, K.: Exploring simple Siamese representation learning. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021)

    Google Scholar 

  30. Nakata, N., Siina, T.: Ensemble Learning of Multiple Models Using Deep Learning for Multiclass Classification of Ultrasound Images of Hepatic Masses (2022)

    Google Scholar 

  31. Alam, M.N., et al.: Contrastive Learning-Based Pretraining Improves Representation and Transferability of Diabetic Retinopathy Classification Models (2022)

    Google Scholar 

  32. DenOtter, T., Schubert, J.: Hounsfield Unit. https://www.ncbi.nlm.nih.gov/books/NBK547721/. Accessed 06 Mar 2023

  33. Li, S., Liu, F., Hao, Z., Jiao, L., Liu, X., Guo, Y.: MinEnt: minimum entropy for self-supervised representation learning. Pattern Recogn. 138, 109364 (2023)

    Article  Google Scholar 

  34. Xia, P., Zhang, L., Li, F.: Learning similarity with cosine similarity ensemble. Inf. Sci. 307, 39–52 (2015)

    Article  MathSciNet  Google Scholar 

  35. Jiang, B., Krim, H., Wu, T., Cansever, D.: Refining self-supervised learning in imaging: beyond linear metric. In: 2022 IEEE International Conference on Image Processing (ICIP) (2022)

    Google Scholar 

  36. Ermolov, A., Siarohin, A., Sangineto, E., Sebe, N.: Whitening for self-supervised representation learning. In: International Conference on Machine Learning, pp. 3015–3024 (2021)

    Google Scholar 

Download references

Acknowledgements

This work was funded by National Institutes of Health and National Cancer Institute grants R01CA233888 and U01CA238444.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amber L. Simpson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mojtahedi, R., Hamghalam, M., Jarnagin, W.R., Do, R.K.G., Simpson, A.L. (2023). Leveraging Contrastive Learning with SimSiam for the Classification of Primary and Secondary Liver Cancers. In: Woo, J., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 Workshops. MICCAI 2023. Lecture Notes in Computer Science, vol 14394. Springer, Cham. https://doi.org/10.1007/978-3-031-47425-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47425-5_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47424-8

  • Online ISBN: 978-3-031-47425-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics