Skip to main content

A Two-Species Model for Abnormal Tau Dynamics in Alzheimer’s Disease

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 Workshops (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14394))

  • 217 Accesses

Abstract

We construct image-driven, mechanism-based biomarkers for Alzheimer’s disease (AD). These markers are parameters and predictions of a biophysical model of misfolded tau propagation, which is calibrated using positron emission tomography (PET) data. An example of such a model is the widely used single-species Fisher-Kolmogorov model (FK). In this article, we reveal a qualitative inconsistency between tau observations and the FK model predictions: FK has a bias towards maintaining the maximum misfolded tau to region of the initial misfolding, which most clinicians and modelers consider it to be the entorhinal cortex (EC). To partially address this EC bias, we introduce a simplified Heterodimer Fisher-Kolmogorov model (HFK) that tracks the dynamics of both abnormal and normal tau. To construct both FK and HFK models, we use a coarse, graph-based representation where nodes represent brain regions and edges represent inter-region connectivity computed using white matter tractography. The model parameters comprise migration, proliferation and clearance rates, which are estimated using a derivative-based optimization algorithm. We compare tau progression predictions between the FK and HFK models and conduct experiments using PET from 45 AD subjects. The HFK model achieved an average of 3.94% less relative fitting error compared to the FK model. Qualitatively, FK model overestimates misfolded tau in EC while HFK does not.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sintini, I., et al.: Longitudinal tau-pet uptake and atrophy in atypical Alzheimer’s disease. NeuroImage: Clin. 23, 101823 (2019)

    Google Scholar 

  2. Bucci, M., Chiotis, K., Nordberg, A.: Alzheimer’s disease profiled by fluid and imaging markers: tau pet best predicts cognitive decline. Molecul. Psychiat. 26(10), 5888–5898 (2021)

    Article  Google Scholar 

  3. Braak, H., Del Tredici, K.: The preclinical phase of the pathological process underlying sporadic alzheimer’s disease. Brain 138(10), 2814–2833 (2015)

    Article  Google Scholar 

  4. Braak, H., Braak, E.: Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82(4), 239–259 (1991)

    Article  Google Scholar 

  5. Fisher, R.A.: The wave of advance of advantageous genes. Annal. Eugen. 7(4), 355–369 (1937)

    Article  Google Scholar 

  6. Kolmogorov, A.N.: A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem. Moscow Univ. Bull. Math. 1, 1–25 (1937)

    Google Scholar 

  7. Petersen, R.C., et al.: Alzheimer’s disease neuroimaging initiative (ADNI): clinical characterization. Neurology 74(3), 201–209 (2010). http://adni.loni.usc.edu/

  8. Subramanian, S., Scheufele, K., Mehl, M., Biros, G.: Where did the tumor start? An inverse solver with sparse localization for tumor growth models. Inverse Probl. 36(4), 045006 (2020)

    Article  MathSciNet  Google Scholar 

  9. Scheufele, K., Subramanian, S., Biros, G.: Calibration of biophysical models for tau-protein spreading in Alzheimer’s disease from pet-MRI. arXiv preprint arXiv: 2007.01236 (2020)

  10. Fornari, S., Schäfer, A., Jucker, M., Goriely, A., Kuhl, E.: Prion-like spreading of Alzheimer’s disease within the brain’s connectome. J. Roy. Soc. Interf. 16(159), 20190356 (2019)

    Article  Google Scholar 

  11. Cohen, F.E., Pan, K.M., Huang, Z., Baldwin, M., Fletterick, R.J., Prusiner, S.B.: Structural clues to prion replication. Science 264(5158), 530–531 (1994)

    Article  Google Scholar 

  12. Jarrett, J.T., Lansbury, P.T., Jr.: Seeding “one-dimensional crystallization’’ of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell 73(6), 1055–1058 (1993)

    Article  Google Scholar 

  13. Bertsch, M., Franchi, B., Marcello, N., Tesi, M.C., Tosin, A.: Alzheimer’s disease: a mathematical model for onset and progression. Math. Med. Biol. J. IMA 34(2), 193–214 (2017)

    MathSciNet  Google Scholar 

  14. Weickenmeier, J., Kuhl, E., Goriely, A.: Multiphysics of prionlike diseases: progression and atrophy. Phys. Rev. Lett. 121(15), 158101 (2018)

    Article  Google Scholar 

  15. Schäfer, A., Peirlinck, M., Linka, K., Kuhl, E.: Alzheimer’s Disease Neuroimaging Initiative (ADNI): Bayesian physics-based modeling of tau propagation in Alzheimer’s disease. Front. Physiol. 12, 702975 (2021)

    Article  Google Scholar 

  16. Vogel, J.W., et al.: Spread of pathological tau proteins through communicating neurons in human Alzheimer’s disease. Nat. Commun. 11(1), 2612 (2020)

    Google Scholar 

  17. Garbarino, S., Marco, L.: Alzheimer’s Disease Neuroimaging Initiative: Investigating hypotheses of neurodegeneration by learning dynamical systems of protein propagation in the brain. Neuroimage 235, 117980 (2021)

    Article  Google Scholar 

  18. Kim, H.R., et al.: Comparison of Amyloid beta and tau spread models in Alzheimer’s disease. Cereb. Cortex 29(10), 4291–4302 (2019)

    Google Scholar 

  19. Matthäus, F.: Diffusion versus network models as descriptions for the spread of prion diseases in the brain. J. Theor. Biol. 240(1), 104–113 (2006)

    Article  MathSciNet  Google Scholar 

  20. Chung, F.R.: Spectral Graph Theory, Chapter 1. American Mathematical Society (1997)

    Google Scholar 

  21. Zhu, C., Byrd, R.H., Lu, P., Nocedal, J.: Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization. ACM Trans. Math. Softw. 23(4), 550–560 (1997)

    Article  MathSciNet  Google Scholar 

  22. Smith, S.M., et al.: Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23, S208–S219 (2004)

    Google Scholar 

  23. Doshi, J., Erus, G., Ou, Y., Resnick, S.M., Gur, R.C., Gur, R.E.: Alzheimer’s Neuroimaging Initiative: MUSE: MUlti-atlas region Segmentation utilizing Ensembles of registration algorithms and parameters, and locally optimal atlas selection. Neuroimage 127, 186–195 (2016)

    Article  Google Scholar 

  24. Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. J. Mach. Learn. Res. 13(1), 723–773 (2012)

    MathSciNet  Google Scholar 

  25. Dagley, A., et al.: Harvard aging brain study: dataset and accessibility. Neuroimage 144, 255–258 (2017). https://habs.mgh.harvard.edu/

  26. Petzold, L.: Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential equations. SIAM J. Sci. Satist. Comput. 4(1), 136–148 (1983)

    Article  MathSciNet  Google Scholar 

  27. Morey, R.D., Romeijn, J.-W., Rouder, J.N.: The philosophy of Bayes factors and the quantification of statistical evidence. J. Math. Psychol. 72, 6–18 (2016)

    Article  MathSciNet  Google Scholar 

  28. Spiegelhalter, D.J., Best, N.G., Carlin, B.P., Van Der Linde, A.: Bayesian measures of model complexity and fit. J. Roy. Stat. Soc. Ser. B (Stat. Methodol.) 64(4), 583–639 (2002)

    Article  MathSciNet  Google Scholar 

  29. Stoica, P., Selen, Y.: Model-order selection: a review of information criterion rules. IEEE Signal Process. Magaz. 21(4), 36–47 (2004)

    Article  Google Scholar 

  30. Tournier, J.-D., et al.: MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation. Neuroimage 202, 116–137 (2019)

    Article  Google Scholar 

  31. Weickenmeier, J., et al.: A physics-based model explains the prion-like features of neurodegeneration in Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. J. Mech. Phys. Solids 124, 264–281 (2019)

    Article  Google Scholar 

  32. Iturria-Medina, Y., et al.: Epidemic spreading model to characterize misfolded proteins propagation in aging and associated neurodegenerative disorders. PLoS Comput. Biol. 10(11) (2014)

    Google Scholar 

  33. Tröltzsch, F.: Optimal control of partial differential equations: theory, methods, and applications. Am. Math. Soc. 112 (2010)

    Google Scholar 

  34. Vogel, J.W., et al.: Four distinct trajectories of tau deposition identified in Alzheimer’s disease. Nat. Med. 27(5), 871–881 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheyu Wen .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 7037 KB)

Supplementary material 2 (mp4 4756 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wen, Z., Ghafouri, A., Biros, G. (2023). A Two-Species Model for Abnormal Tau Dynamics in Alzheimer’s Disease. In: Woo, J., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 Workshops. MICCAI 2023. Lecture Notes in Computer Science, vol 14394. Springer, Cham. https://doi.org/10.1007/978-3-031-47425-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47425-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47424-8

  • Online ISBN: 978-3-031-47425-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics