Skip to main content

Outlier Robust Disease Classification via Stochastic Confidence Network

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 Workshops (MICCAI 2023)

Abstract

Accurate and timely diagnosis and classification of diseases using medical imaging data are essential for effective treatment planning and prognosis. Yet, the presence of outliers, which are rare and distinctive data samples, can result in substantial deviations from the typical distribution of a dataset, particularly due to atypical or uncommon medical conditions. Consequently, outliers can significantly impact the accuracy of deep learning (DL) models used in medical imaging-based diagnosis. To counter this, in this work, we propose a novel DL model, dubbed the Stochastic Confidence Network (SCN), designed to be robust to outliers. SCN leverages image patches and generates a decoded latent matrix representing high-level categorical features. By performing a stochastic comparison of the decoded latent matrix between outliers and typical samples, SCN eliminates irrelevant patches of outliers and resamples outliers into a typical distribution, thereby ensuring statistically confident predictions. We evaluated the performance of SCN on two databases for diagnosing breast tumors with 780 ultrasound images and Alzheimer’s disease with 2,700 3D PET volumes, with outliers present in both databases. Our experimental results demonstrated the robustness of SCN in classifying outliers, thereby yielding improved diagnostic performance, compared with state-of-the-art models, by a large margin. Our findings suggest that SCN can provide precise and outlier-resistant diagnostic performance in breast cancer and Alzheimer’s disease and is scalable to other medical imaging modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Dhabyani, W., Gomaa, M., Khaled, H., Fahmy, A.: Dataset of breast ultrasound images. Data Brief 28, 104863 (2020)

    Article  Google Scholar 

  2. Brock, A., De, S., Smith, S.L., Simonyan, K.: High-performance large-scale image recognition without normalization. In: International Conference on Machine Learning, pp. 1059–1071. PMLR (2021)

    Google Scholar 

  3. Chen, X., Pawlowski, N., Rajchl, M., Glocker, B., Konukoglu, E.: Deep generative models in the real-world: an open challenge from medical imaging. arXiv preprint arXiv:1806.05452 (2018)

  4. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  5. Fox, P.T., Mintun, M.A., Reiman, E.M., Raichle, M.E.: Enhanced detection of focal brain responses using intersubject averaging and change-distribution analysis of subtracted pet images. J. Cereb. Blood Flow Metab. 8(5), 642–653 (1988)

    Article  Google Scholar 

  6. Grau, V., Mewes, A., Alcaniz, M., Kikinis, R., Warfield, S.K.: Improved watershed transform for medical image segmentation using prior information. IEEE Trans. Med. Imaging 23(4), 447–458 (2004)

    Article  Google Scholar 

  7. Han, C., et al.: MADGAN: unsupervised medical anomaly detection GAN using multiple adjacent brain MRI slice reconstruction. BMC Bioinform. 22(2), 1–20 (2021)

    MathSciNet  Google Scholar 

  8. Hu, M., et al.: Reconstruction of a 3D surface from video that is robust to missing data and outliers: application to minimally invasive surgery using stereo and mono endoscopes. Med. Image Anal. 16(3), 597–611 (2012)

    Article  Google Scholar 

  9. Huyan, N., Quan, D., Zhang, X., Liang, X., Chanussot, J., Jiao, L.: Unsupervised outlier detection using memory and contrastive learning. IEEE Trans. Image Process. 31, 6440–6454 (2022)

    Article  Google Scholar 

  10. Ijaz, M.F., Attique, M., Son, Y.: Data-driven cervical cancer prediction model with outlier detection and over-sampling methods. Sensors 20(10), 2809 (2020)

    Article  Google Scholar 

  11. Jabeen, K., et al.: Breast cancer classification from ultrasound images using probability-based optimal deep learning feature fusion. Sensors 22(3), 807 (2022)

    Article  Google Scholar 

  12. Kuklisova-Murgasova, M., Quaghebeur, G., Rutherford, M.A., Hajnal, J.V., Schnabel, J.A.: Reconstruction of fetal brain MRI with intensity matching and complete outlier removal. Med. Image Anal. 16(8), 1550–1564 (2012)

    Article  Google Scholar 

  13. Levene, H.: Robust tests for equality of variances. In: Contributions to Probability and Statistics, pp. 278–292 (1960)

    Google Scholar 

  14. Li, W., et al.: Outlier detection and removal improves accuracy of machine learning approach to multispectral burn diagnostic imaging. J. Biomed. Opt. 20(12), 121305–121305 (2015)

    Article  Google Scholar 

  15. Luna, B., Velanova, K., Geier, C.F.: Methodological approaches in developmental neuroimaging studies. Hum. Brain Mapp. 31(6), 863–871 (2010)

    Article  Google Scholar 

  16. Manjon, J.V., et al.: Robust MRI brain tissue parameter estimation by multistage outlier rejection. Magn. Reson. Med. 59(4), 866–873 (2008)

    Article  Google Scholar 

  17. Michailovich, O., Adam, D.: Robust estimation of ultrasound pulses using outlier-resistant de-noising. IEEE Trans. Med. Imaging 22(3), 368–381 (2003)

    Article  Google Scholar 

  18. Morris, D., Nossin-Manor, R., Taylor, M.J., Sled, J.G.: Preterm neonatal diffusion processing using detection and replacement of outliers prior to resampling. Magn. Reson. Med. 66(1), 92–101 (2011)

    Article  Google Scholar 

  19. Oh, G., Lee, J.E., Ye, J.C.: Unpaired MR motion artifact deep learning using outlier-rejecting bootstrap aggregation. IEEE Trans. Med. Imaging 40(11), 3125–3139 (2021)

    Article  Google Scholar 

  20. Petersen, R.C., et al.: Alzheimer’s disease neuroimaging initiative (ADNI): clinical characterization. Neurology 74(3), 201–209 (2010)

    Article  Google Scholar 

  21. Prastawa, M., Bullitt, E., Ho, S., Gerig, G.: A brain tumor segmentation framework based on outlier detection. Med. Image Anal. 8(3), 275–283 (2004)

    Article  Google Scholar 

  22. Sairanen, V., Leemans, A., Tax, C.M.: Fast and accurate slicewise outlier detection (SOLID) with informed model estimation for diffusion MRI data. Neuroimage 181, 331–346 (2018)

    Article  Google Scholar 

  23. Sarker, I.H.: Deep learning: a comprehensive overview on techniques, taxonomy, applications and research directions. SN Comput. Sci. 2(6), 420 (2021)

    Article  Google Scholar 

  24. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)

    Google Scholar 

  25. Sethi, M., Rani, S., Singh, A., Mazón, J.L.V.: A CAD system for Alzheimer’s disease classification using neuroimaging MRI 2D slices. Comput. Math. Methods Med. 2022 (2022)

    Google Scholar 

  26. Shridhar, K., Laumann, F., Liwicki, M.: A comprehensive guide to bayesian convolutional neural network with variational inference. arXiv preprint arXiv:1901.02731 (2019)

  27. Smiti, A.: A critical overview of outlier detection methods. Comput. Sci. Rev. 38, 100306 (2020)

    Article  MathSciNet  Google Scholar 

  28. Van Leemput, K., Maes, F., Vandermeulen, D., Colchester, A., Suetens, P.: Automated segmentation of multiple sclerosis lesions by model outlier detection. IEEE Trans. Med. Imaging 20(8), 677–688 (2001)

    Article  Google Scholar 

  29. Wortsman, M., et al.: Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time. In: International Conference on Machine Learning, pp. 23965–23998. PMLR (2022)

    Google Scholar 

  30. Yamashita, R., Nishio, M., Do, R.K.G., Togashi, K.: Convolutional neural networks: an overview and application in radiology. Insights Imaging 9(4), 611–629 (2018). https://doi.org/10.1007/s13244-018-0639-9

    Article  Google Scholar 

  31. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2921–2929 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Youn Hwang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 4114 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lee, K. et al. (2023). Outlier Robust Disease Classification via Stochastic Confidence Network. In: Woo, J., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 Workshops. MICCAI 2023. Lecture Notes in Computer Science, vol 14394. Springer, Cham. https://doi.org/10.1007/978-3-031-47425-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47425-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47424-8

  • Online ISBN: 978-3-031-47425-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics