Skip to main content

Which Semantics for Human-Machine Dialogue Systems?

  • Conference paper
  • First Online:
Proceedings of the Future Technologies Conference (FTC) 2023, Volume 1 (FTC 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 813))

Included in the following conference series:

  • 665 Accesses

Abstract

In this paper, we present an intelligent memory system. The input of the system is a downward flow which, at the moment, consists of newspaper articles retrieved from the Web. The output consists of articles’ summaries intended to provide an intelligent dialogue system. The system also integrates an upward flow that comes from this intelligent dialogue system. It is used to regulate the downward flow. The goal is to ensure that the information provided by the intelligent memory system meets the expectations of the users of the intelligent dialogue system. Beyond the presentation of the intelligent memory system, the central question is the place of semantics in an information system that uses Artificial Intelligence and the place of the information understanding performed by the intelligent memory system during the information automatic analysis.

« Science sans conscience n’est que ruine de l’âme (Science without conscience is only ruin of the soul.) » Rabelais

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The CHATGPT tool illustrates the progress of the domain (https://chat.openai.com).

  2. 2.

    Typically, so-called task-oriented or goal-oriented dialog systems that are used to make reservations or solicit commercial services.

  3. 3.

    MIMIR means in French: Mémoire Intelligente Mémoire Informatique en Robotique (Intelligent Memory Computer Memory in Robotics).

  4. 4.

    Buddy is a social robot developed by the company BlueFrog Robotic (https://buddytherobot.com).

  5. 5.

    Phonemes are units of phonetic analysis; morphemes are units of morphological analysis and syntagms are units of syntactic analysis.

  6. 6.

    According to generative grammar, competence is an innate property. It explains the mastery of the linguistic system from early childhood. Performance is the use of competence to formulate and interpret statements.

  7. 7.

    For example, She really has a mysterious smile is an interpretable utterance in front of the Mona Lisa painting.

  8. 8.

    The utterance I saw the painting of the woman who has a mysterious smile is interpretable if the painting of La Joconde is common knowledge.

  9. 9.

    For example, ABSORPTION (BEING ALIVE1, FOOD2) is the functional representation of a predicate-argument structure with ABSORPTION corresponding to the predicate, BEING ALIVE1, to its first argument, FOOD2 to its second arguments. The arguments LIVING BEING1 and FOOD2 subsume denominations of entities such as, respectively, man, woman, child, animal, etc. and fruit, meat, grass, etc. The ABSORPTION predicate subsumes denotations of the relationship between entities that correspond, attributing a new representation, to verbs: absorb, swallow, graze, ingest, eat, or feed. Predicate-argument structures subsume propositional content, known as predicative schemes, whose encoding gives rise to utterances. Thus, the utterance, “The man eats a fruit has as a predicative scheme ‘man to eat fruit’ and as a predicate-argument structure ABSORPTION (LIVING BEING1, FOOD2).”.

  10. 10.

    The tripartition ‘sport-football-Mbappé’ is an example of a theme-topic-subject tripartition.

References

  1. LeCun, Y.: A path towards autonomous machine intelligence. preprint posted on openreview (2022)

    Google Scholar 

  2. Danlos, L.: G-TAG: un formalisme lexicalisé pour la génération de textes inspiré de TAG, T.A.L, 39–2 (1998)

    Google Scholar 

  3. Buvet, P.-A, Rouam, A., Fache, B.: How does a robot speak? about the man-machine verbal interaction. In: Proceedings_of_SDMM19_and_AnSWeR19, CEUR (2019). http://ceur-ws.org/Vol-2487/anpaper1.pdf

  4. Buvet, P.-A, Rouam, A., Fache, B.: Interview with a robot: how to equip the elderly companion robots with speech? In: Proceedings of the Future Technologies Conference (FTC 2020), vol. 2, 310–326. Springer (2020). Doi: https://doi.org/10.1007/978-3-030-63089-8_20

  5. Buvet, P.-A., Rouam, A., Fadel, W., Fache, B.: Which intelligence for human-machine dialogue systems? In: Proceedings of the Future Technologies Conference (FTC 2021), vol. 1, pp. 121–133. Springer (2021)

    Google Scholar 

  6. Buvet, P.-A, Rouam, A., Fadel, W., Fache, B.: How does a social robot analyze emotions? In: Proceedings of the Future Technologies Conference (FTC 2022), vol. 3, 463–477. Springer (2022)

    Google Scholar 

  7. Edelman, G.M.: Bright Air. On the Matter of the Mind, Basic Books, Brilliant Fire (1992)

    Google Scholar 

  8. de Rosnay, J.: Le macroscope Vers une vision globale, Seuil (1975)

    Google Scholar 

  9. Neveu, F.: Dictionnaire des sciences du langage, Armand Colin (2011)

    Google Scholar 

  10. Chomsky, N.: Cartesian Linguistic, Harper & Row

    Google Scholar 

  11. Baker, C., F.: La sémantique des cadres et le projet FRAMENET: une approche différente de la notion de valence, Langages, 176, pp. 32–49 (2009)

    Google Scholar 

  12. Lyons, J.: Introduction to Theoretical Linguistics, Cambridge University Press (1968)

    Google Scholar 

  13. Sperber, D., Wilson, D.: Relevance. Blackwell, Communication and Cognition (1986)

    Google Scholar 

  14. Kleiber, G.: Les différentes conceptions de la pragmatique ou pragmatique où es-tu ? L'information grammaticale, pp. 3–8 (1982)

    Google Scholar 

  15. Ermine, J.-L.: Les systèmes de connaissances, Hermès (2000)

    Google Scholar 

  16. James, W.: The Principles of Psychology, Dover (1890)

    Google Scholar 

  17. Berthoz, A.: La Simplexité, Odile Jacob (2009)

    Google Scholar 

  18. Balota, D.A., Coane, J.H.: Cognitive Psychology of Memory, in Learning and Memory: A Comprehensive Reference. Elsevier (2008)

    Google Scholar 

  19. Buvet, P.-A.: Prédication et relation: l’exemple de la détermination, in Le prédicat en questions, Champion, sous presse

    Google Scholar 

  20. Nouvel, D., Ehrmann, M., Rosset, S.: Named Entities for Computational Linguistics, ISTE Wiley

    Google Scholar 

  21. Adadi, A., Berrada, M.: Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI), IEEE (2018)

    Google Scholar 

  22. Holzinger, A.: Interactive machine learning for health informatics: When do we need the human-in-the-loop? Brain Inform. (2016)

    Google Scholar 

  23. Kiefer, S., Hoffmann, M., Schmid, U.: Semantic interactive learning for text classification: a constructive approach for contextual interactions. Mach. Learn. Knowl. Extr. 4, 994–1010 (2022). https://doi.org/10.3390/make4040050AcademicEditor:AndreasHolzinger2022

    Article  Google Scholar 

  24. https://spacy.io/

  25. Buvet, P.-A.: La dimension lexicale de la détermination en français, Champion (2013)

    Google Scholar 

  26. Gross, M.: Grammaire transformationnelle du français, tome 1, La syntaxe du verbe, Cantilène (1986)

    Google Scholar 

  27. Kohonen, T.: Self-Organizing Maps, vol. 30. Springer Verlag (1995)

    Google Scholar 

  28. Aaron, C., Perraudin, C. Rynkiewicz, J.: Adaptation de l’algorithme SOM à l’analyse de données temporelles et spatiales : Application à l’étude de l’évolution des performances européennes en matière d’emploi, Proceeding of ASMDA 2005 (2005)

    Google Scholar 

  29. Devlin, J., Chang, M.-W., K. Lee, Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding, arXiv preprint arXiv:1810.04805 (2019)

  30. Murphy, B., Talukdar, P., Mitchell: Learning Effective and Interpretable Semantic Models using Non-Negative Sparse Embedding. In: Proceedings of COLING 2012, 2012, pp. 1933–1950 (2012)

    Google Scholar 

  31. Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using siamese BERT-networks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics (2019)

    Google Scholar 

  32. Gábor, K., Tellier, I., Charnois, T., Zargayouna, H., Buscaldi, D.: Détection et classification non supervisées de relations sémantiques dans des articles scientifiques. JEP-TALN-RECITAL 2016 (2016)

    Google Scholar 

  33. Jiang, S., Angarita, R., Cormier,S., Rousseaux, F.: Fine-tuning BERT-based models for Plant Health Bulletin Classification. Technology and Environment Workshop (2021)

    Google Scholar 

  34. Wang, X., Hua, Y., Kodirov, E., Robertson, N.M.: Ranked list loss for deep metric learning. IEEE Trans. Pattern Anal. Mach. Intell. 44–9 (2022)

    Google Scholar 

  35. https://fr.wikipedia.org/wiki/BigQuery

  36. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text transformer. IEEE Trans. Pattern Anal. Mach. Intell., 44–49 (2022)

    Google Scholar 

  37. https://unitexgramlab.org/fr

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-André Buvet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Buvet, PA., Fache, B., Rouam, A. (2023). Which Semantics for Human-Machine Dialogue Systems?. In: Arai, K. (eds) Proceedings of the Future Technologies Conference (FTC) 2023, Volume 1. FTC 2023. Lecture Notes in Networks and Systems, vol 813. Springer, Cham. https://doi.org/10.1007/978-3-031-47454-5_27

Download citation

Publish with us

Policies and ethics