Abstract
In this paper, we present an intelligent memory system. The input of the system is a downward flow which, at the moment, consists of newspaper articles retrieved from the Web. The output consists of articles’ summaries intended to provide an intelligent dialogue system. The system also integrates an upward flow that comes from this intelligent dialogue system. It is used to regulate the downward flow. The goal is to ensure that the information provided by the intelligent memory system meets the expectations of the users of the intelligent dialogue system. Beyond the presentation of the intelligent memory system, the central question is the place of semantics in an information system that uses Artificial Intelligence and the place of the information understanding performed by the intelligent memory system during the information automatic analysis.
« Science sans conscience n’est que ruine de l’âme (Science without conscience is only ruin of the soul.) » Rabelais
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The CHATGPT tool illustrates the progress of the domain (https://chat.openai.com).
- 2.
Typically, so-called task-oriented or goal-oriented dialog systems that are used to make reservations or solicit commercial services.
- 3.
MIMIR means in French: Mémoire Intelligente Mémoire Informatique en Robotique (Intelligent Memory Computer Memory in Robotics).
- 4.
Buddy is a social robot developed by the company BlueFrog Robotic (https://buddytherobot.com).
- 5.
Phonemes are units of phonetic analysis; morphemes are units of morphological analysis and syntagms are units of syntactic analysis.
- 6.
According to generative grammar, competence is an innate property. It explains the mastery of the linguistic system from early childhood. Performance is the use of competence to formulate and interpret statements.
- 7.
For example, She really has a mysterious smile is an interpretable utterance in front of the Mona Lisa painting.
- 8.
The utterance I saw the painting of the woman who has a mysterious smile is interpretable if the painting of La Joconde is common knowledge.
- 9.
For example, ABSORPTION (BEING ALIVE1, FOOD2) is the functional representation of a predicate-argument structure with ABSORPTION corresponding to the predicate, BEING ALIVE1, to its first argument, FOOD2 to its second arguments. The arguments LIVING BEING1 and FOOD2 subsume denominations of entities such as, respectively, man, woman, child, animal, etc. and fruit, meat, grass, etc. The ABSORPTION predicate subsumes denotations of the relationship between entities that correspond, attributing a new representation, to verbs: absorb, swallow, graze, ingest, eat, or feed. Predicate-argument structures subsume propositional content, known as predicative schemes, whose encoding gives rise to utterances. Thus, the utterance, “The man eats a fruit has as a predicative scheme ‘man to eat fruit’ and as a predicate-argument structure ABSORPTION (LIVING BEING1, FOOD2).”.
- 10.
The tripartition ‘sport-football-Mbappé’ is an example of a theme-topic-subject tripartition.
References
LeCun, Y.: A path towards autonomous machine intelligence. preprint posted on openreview (2022)
Danlos, L.: G-TAG: un formalisme lexicalisé pour la génération de textes inspiré de TAG, T.A.L, 39–2 (1998)
Buvet, P.-A, Rouam, A., Fache, B.: How does a robot speak? about the man-machine verbal interaction. In: Proceedings_of_SDMM19_and_AnSWeR19, CEUR (2019). http://ceur-ws.org/Vol-2487/anpaper1.pdf
Buvet, P.-A, Rouam, A., Fache, B.: Interview with a robot: how to equip the elderly companion robots with speech? In: Proceedings of the Future Technologies Conference (FTC 2020), vol. 2, 310–326. Springer (2020). Doi: https://doi.org/10.1007/978-3-030-63089-8_20
Buvet, P.-A., Rouam, A., Fadel, W., Fache, B.: Which intelligence for human-machine dialogue systems? In: Proceedings of the Future Technologies Conference (FTC 2021), vol. 1, pp. 121–133. Springer (2021)
Buvet, P.-A, Rouam, A., Fadel, W., Fache, B.: How does a social robot analyze emotions? In: Proceedings of the Future Technologies Conference (FTC 2022), vol. 3, 463–477. Springer (2022)
Edelman, G.M.: Bright Air. On the Matter of the Mind, Basic Books, Brilliant Fire (1992)
de Rosnay, J.: Le macroscope Vers une vision globale, Seuil (1975)
Neveu, F.: Dictionnaire des sciences du langage, Armand Colin (2011)
Chomsky, N.: Cartesian Linguistic, Harper & Row
Baker, C., F.: La sémantique des cadres et le projet FRAMENET: une approche différente de la notion de valence, Langages, 176, pp. 32–49 (2009)
Lyons, J.: Introduction to Theoretical Linguistics, Cambridge University Press (1968)
Sperber, D., Wilson, D.: Relevance. Blackwell, Communication and Cognition (1986)
Kleiber, G.: Les différentes conceptions de la pragmatique ou pragmatique où es-tu ? L'information grammaticale, pp. 3–8 (1982)
Ermine, J.-L.: Les systèmes de connaissances, Hermès (2000)
James, W.: The Principles of Psychology, Dover (1890)
Berthoz, A.: La Simplexité, Odile Jacob (2009)
Balota, D.A., Coane, J.H.: Cognitive Psychology of Memory, in Learning and Memory: A Comprehensive Reference. Elsevier (2008)
Buvet, P.-A.: Prédication et relation: l’exemple de la détermination, in Le prédicat en questions, Champion, sous presse
Nouvel, D., Ehrmann, M., Rosset, S.: Named Entities for Computational Linguistics, ISTE Wiley
Adadi, A., Berrada, M.: Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI), IEEE (2018)
Holzinger, A.: Interactive machine learning for health informatics: When do we need the human-in-the-loop? Brain Inform. (2016)
Kiefer, S., Hoffmann, M., Schmid, U.: Semantic interactive learning for text classification: a constructive approach for contextual interactions. Mach. Learn. Knowl. Extr. 4, 994–1010 (2022). https://doi.org/10.3390/make4040050AcademicEditor:AndreasHolzinger2022
Buvet, P.-A.: La dimension lexicale de la détermination en français, Champion (2013)
Gross, M.: Grammaire transformationnelle du français, tome 1, La syntaxe du verbe, Cantilène (1986)
Kohonen, T.: Self-Organizing Maps, vol. 30. Springer Verlag (1995)
Aaron, C., Perraudin, C. Rynkiewicz, J.: Adaptation de l’algorithme SOM à l’analyse de données temporelles et spatiales : Application à l’étude de l’évolution des performances européennes en matière d’emploi, Proceeding of ASMDA 2005 (2005)
Devlin, J., Chang, M.-W., K. Lee, Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding, arXiv preprint arXiv:1810.04805 (2019)
Murphy, B., Talukdar, P., Mitchell: Learning Effective and Interpretable Semantic Models using Non-Negative Sparse Embedding. In: Proceedings of COLING 2012, 2012, pp. 1933–1950 (2012)
Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using siamese BERT-networks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics (2019)
Gábor, K., Tellier, I., Charnois, T., Zargayouna, H., Buscaldi, D.: Détection et classification non supervisées de relations sémantiques dans des articles scientifiques. JEP-TALN-RECITAL 2016 (2016)
Jiang, S., Angarita, R., Cormier,S., Rousseaux, F.: Fine-tuning BERT-based models for Plant Health Bulletin Classification. Technology and Environment Workshop (2021)
Wang, X., Hua, Y., Kodirov, E., Robertson, N.M.: Ranked list loss for deep metric learning. IEEE Trans. Pattern Anal. Mach. Intell. 44–9 (2022)
Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text transformer. IEEE Trans. Pattern Anal. Mach. Intell., 44–49 (2022)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Buvet, PA., Fache, B., Rouam, A. (2023). Which Semantics for Human-Machine Dialogue Systems?. In: Arai, K. (eds) Proceedings of the Future Technologies Conference (FTC) 2023, Volume 1. FTC 2023. Lecture Notes in Networks and Systems, vol 813. Springer, Cham. https://doi.org/10.1007/978-3-031-47454-5_27
Download citation
DOI: https://doi.org/10.1007/978-3-031-47454-5_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-47453-8
Online ISBN: 978-3-031-47454-5
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)