Abstract
Cartesian Genetic Programming is a well-established version of Genetic Programming and has meanwhile been applied to many use cases. The case of learning swarm behavior for optimization recently showed some fitness landscape characteristics that make program evolution harder due to the intrinsic barrier structure that is hard to pass by using standard mutation. In this paper, we explore possible improvements by replacing the standard uniform mutation by Lévy flights when training with a \((\mu +\lambda )\)-evolution strategy. We demonstrate the superiority of the new variation operation for training instances of the optimization learning problem and compare success rates and minimal computational effort.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bremer, J.: Learning to Optimize, pp. 1–19. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-031-06839-3_1
Bremer, J., Lehnhoff, S.: Towards Evolutionary Emergence. Ann. Comput. Sci. Inform. Syst. 26, 55–60 (2021)
Christensen, S., Oppacher, F.: An analysis of Koza’s computational effort statistic for genetic programming. In: Genetic Programming: 5th European Conference, EuroGP 2002 Kinsale, Ireland, April 3–5, 2002 Proceedings 5. pp. 182–191 (2002)
Clegg, J., Walker, J.A., Miller, J.F.: A new crossover technique for cartesian genetic programming. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, pp. 1580–1587 (2007)
Diveev, A.: Cartesian genetic programming for synthesis of optimal control system. In: Proceedings of the Future Technologies Conference, pp. 205–222. Springer (2020)
Fogel, D.B., Atmar, J.W.: Comparing genetic operators with gaussian mutations in simulated evolutionary processes using linear systems. Biol. Cybern. 63(2), 111–114 (1990)
Goldman, B.W., Punch, W.F.: Reducing wasted evaluations in cartesian genetic programming. In: European Conference on Genetic Programming, pp. 61–72. Springer (2013)
Gupta, R., Pal, R.: Biogeography-based optimization with Lévy-flight exploration for combinatorial optimization. In: 2018 8th International Conference on Cloud Computing, Data Science Engineering (Confluence), pp. 664–669 (2018)
Haklı, H., Uğuz, H.: A novel particle swarm optimization algorithm with Lévy flight. Appl. Soft Comput. 23, 333–345 (2014)
Harding, S., Banzhaf, W., Miller, J.F.: A survey of self modifying cartesian genetic programming. In: Genetic Programming Theory and Practice VIII, pp. 91–107. Springer (2011)
Harding, S., Leitner, J., Schmidhuber, J.: Cartesian genetic programming for image processing. In: Genetic Programming Theory and Practice X, pp. 31–44. Springer (2013)
Heidari, A.A., Pahlavani, P.: An efficient modified grey wolf optimizer with lévy flight for optimization tasks. Appl. Soft Comput. 60, 115–134 (2017)
Houssein, E.H., Saad, M.R., Hashim, F.A., Shaban, H., Hassaballah, M.: Lévy flight distribution: a new metaheuristic algorithm for solving engineering optimization problems. Eng. Appl. Artif. Intell. 94, 103731 (2020)
Jamil, M., Zepernick, H.J.: Lévy flights and global optimization. In: Yang, X.S., Cui, Z., Xiao, R., Gandomi, A.H., Karamanoglu, M. (eds.) Swarm Intelligence and Bio-Inspired Computation, pp. 49–72. Elsevier, Oxford (2013). https://www.sciencedirect.com/science/article/pii/B978012405163800003X
Jensi, R., Jiji, G.W.: An enhanced particle swarm optimization with Lévy flight for global optimization. Appl. Soft Comput. 43, 248–261 (2016)
Kaidi, W., Khishe, M., Mohammadi, M.: Dynamic Lévy flight chimp optimization. Knowl.-Based Syst. 235, 107625 (2022)
Kamaruzaman, A.F., Zain, A.M., Yusuf, S.M., Udin, A.: Lévy flight algorithm for optimization problems—a literature review. In: Applied Mechanics and Materials, vol. 421, pp. 496–501. Trans Tech Publ (2013)
Khan, M.M., Ahmad, A.M., Khan, G.M., Miller, J.F.: Fast learning neural networks using cartesian genetic programming. Neurocomputing 121, 274–289 (2013)
Koza, J.R., Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection, vol. 1. MIT press (1992)
Levandowsky, M., Klafter, J., White, B.: Swimming behavior and chemosensory responses in the protistan microzooplankton as a function of the hydrodynamic regime. Bull. Mar. Sci. 43(3), 758–763 (1988)
Liu, Y., Cao, B.: A novel ant colony optimization algorithm with Lévy flight. IEEE Access 8, 67205–67213 (2020)
Manazir, A., Raza, K.: Recent developments in cartesian genetic programming and its variants. ACM Comput. Surv. (CSUR) 51(6), 1–29 (2019)
Mandelbrot, B.B., Mandelbrot, B.B.: The Fractal Geometry of Nature, vol. 1. WH Freeman New York (1982)
Miller, J.: Cartesian Genetic Programming, vol. 43 (2003)
Miller, J.F., Mohid, M.: Function optimization using cartesian genetic programming. In: Proceedings of the 15th Annual Conference Companion on Genetic and Evolutionary Computation. pp. 147–148. GECCO ’13 Companion, Association for Computing Machinery, New York, NY, USA (2013). https://doi.org/10.1145/2464576.2464646
Miller, J.F., Thomson, P., Fogarty, T.: Designing electronic circuits using evolutionary algorithms. arithmetic circuits: a case study. Genetic Algorithms and Evolution Strategies in Engineering and Computer Science, pp. 105–131 (1997)
Miller, J.F., et al.: An empirical study of the efficiency of learning boolean functions using a cartesian genetic programming approach. In: Proceedings of the Genetic and Evolutionary Computation Conference, vol. 2, pp. 1135–1142 (1999)
Miller, J.F.: Cartesian genetic programming: its status and future. Genet. Program Evolvable Mach. 21(1), 129–168 (2020)
Oranchak, D.: Cartesian Genetic Programming for the Java Evolutionary Computing Toolkit (CGP for ECJ) (2010). http://www.oranchak.com/cgp/doc/
Reynolds, A.: Lévy flight movement patterns in marine predators may derive from turbulence cues. Proc. Roy. Soc. A: Math. Phys. Eng. Sci. 470(2171), 20140408 (2014)
dos Santos Coelho, L., Bora, T.C., Klein, C.E.: A genetic programming approach based on lévy flight applied to nonlinear identification of a poppet valve. Appl. Math. Model. 38(5–6), 1729–1736 (2014)
Schuster, F., Levandowsky, M.: Chemosensory responses of acanthamoeba castellanii: visual analysis of random movement and responses to chemical signals. J. Eukaryot. Microbiol. 43(2), 150–158 (1996)
Shlesinger, M.F., Klafter, J.: Lévy walks versus lévy flights. On Growth and Form: Fractal and Non-fractal Patterns in Physics, pp. 279–283 (1986)
Shukla, S., Kumar, L., Bera, T., Dasgupta, R.: A Lévy Flight based Narrow Passage Sampling Method for Probabilistic Roadmap Planners. arXiv preprint arXiv:2107.00817 (2021)
Sotto, L.F.D.P., Kaufmann, P., Atkinson, T., Kalkreuth, R., Basgalupp, M.P.: A study on graph representations for genetic programming. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference. pp. 931–939. GECCO ’20, Association for Computing Machinery, New York, NY, USA (2020), https://doi.org/10.1145/3377930.3390234
Turner, A.J., Miller, J.F.: Recurrent cartesian genetic programming. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) Parallel Problem Solving from Nature—PPSN XIII, pp. 476–486. Springer International Publishing, Cham (2014)
Viswanathan, G.M.: Fish in lévy-flight foraging. Nature 465(7301), 1018–1019 (2010)
Viswanathan, G.M., Afanasyev, V., Buldyrev, S.V., Murphy, E.J., Prince, P.A., Stanley, H.E.: Lévy flight search patterns of wandering albatrosses. Nature 381(6581), 413–415 (1996)
Viswanathan, G., Afanasyev, V., Buldyrev, S.V., Havlin, S., Da Luz, M., Raposo, E., Stanley, H.E.: Lévy flights in random searches. Phys. A 282(1–2), 1–12 (2000)
Walker, J.A., Völk, K., Smith, S.L., Miller, J.F.: Parallel evolution using multi-chromosome cartesian genetic programming. Genet. Program Evolvable Mach. 10(4), 417 (2009)
Zhou, Y., Ling, Y., Luo, Q.: Lévy flight trajectory-based whale optimization algorithm for engineering optimization. Eng. Comput. (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bremer, J., Lehnhoff, S. (2024). Hybridizing Lévy Flights and Cartesian Genetic Programming for Learning Swarm-Based Optimization. In: Naik, N., Jenkins, P., Grace, P., Yang, L., Prajapat, S. (eds) Advances in Computational Intelligence Systems. UKCI 2023. Advances in Intelligent Systems and Computing, vol 1453. Springer, Cham. https://doi.org/10.1007/978-3-031-47508-5_24
Download citation
DOI: https://doi.org/10.1007/978-3-031-47508-5_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-47507-8
Online ISBN: 978-3-031-47508-5
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)