Abstract
Place recognition, the task of recognizing a previously visited location, has a decisive role in the autonomous driving field since it enables rough global localization in GNSS-denied environments. In the last few years, LiDAR-based place recognition and deep learning approaches achieved outstanding results also within challenging scenarios. However, the use of DNN-based methods is still limited due to the safety-critical nature of the task and the difficulty in detecting potential model failures. Determining the uncertainty of DNN-based outputs is a useful technique to discover unreliable predictions. Among the existing approaches, Deep Ensemble represents a popular sampling method to estimate epistemic uncertainty by exploiting multiple models. However, an in-depth investigation of its application for LiDAR-based place recognition is missing and only one approach has been recently proposed [22]. Our ultimate goal is to gain a deeper understanding of the strengths and weaknesses of Deep Ensemble methods. To achieve this, we propose a Deep Ensemble strategy that uses a knowledge-distillation approach and we compare it to [22] by evaluating its recall and failure detection capabilities.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amini, A., Schwarting, W., Soleimany, A., Rus, D.: Deep evidential regression. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 14927–14937. Curran Associates, Inc. (2020). https://proceedings.neurips.cc/paper_files/paper/2020/file/aab085461de182608ee9f607f3f7d18f-Paper.pdf
Arandjelovic, R., Gronat, P., Torii, A., Pajdla, T., Sivic, J.: NetVLAD: CNN architecture for weakly supervised place recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)
Arandjelovic, R., Zisserman, A.: All about VLAD. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1578–1585 (2013)
Cai, K., Lu, C.X., Huang, X.: STUN: self-teaching uncertainty estimation for place recognition. In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6614–6621 (2022). https://doi.org/10.1109/IROS47612.2022.9981546
Cattaneo, D., Vaghi, M., Fontana, S., Ballardini, A.L., Sorrenti, D.G.: Global visual localization in lidar-maps through shared 2D–3D embedding space. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 4365–4371 (2020). https://doi.org/10.1109/ICRA40945.2020.9196859
Cattaneo, D., Vaghi, M., Valada, A.: LCDNet: deep loop closure detection and point cloud registration for lidar slam. IEEE Trans. Rob. 38(4), 2074–2093 (2022). https://doi.org/10.1109/TRO.2022.3150683
Deng, H., Bui, M., Navab, N., Guibas, L., Ilic, S., Birdal, T.: Deep bingham networks: dealing with uncertainty and ambiguity in pose estimation. Int. J. Comput. Vision 130, 1–28 (2022)
Denker, J., LeCun, Y.: Transforming neural-net output levels to probability distributions. In: Lippmann, R., Moody, J., Touretzky, D. (eds.) Advances in Neural Information Processing Systems, vol. 3. Morgan-Kaufmann (1990). https://proceedings.neurips.cc/paper_files/paper/1990/file/7eacb532570ff6858afd2723755ff790-Paper.pdf
Hausler, S., Garg, S., Xu, M., Milford, M., Fischer, T.: Patch-NetVLAD: multi-scale fusion of locally-global descriptors for place recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14141–14152 (2021)
Hermans, A., Beyer, L., Leibe, B.: In defense of the triplet loss for person re-identification. arXiv preprint arXiv:1703.07737 (2017)
Jégou, H., Douze, M., Schmid, C., Pérez, P.: Aggregating local descriptors into a compact image representation. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3304–3311 (2010). https://doi.org/10.1109/CVPR.2010.5540039
Kendall, A., Cipolla, R.: Modelling uncertainty in deep learning for camera relocalization. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 4762–4769 (2016). https://doi.org/10.1109/ICRA.2016.7487679
Kim, G., Park, Y.S., Cho, Y., Jeong, J., Kim, A.: MulRan: multimodal range dataset for urban place recognition. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 6246–6253 (2020). https://doi.org/10.1109/ICRA40945.2020.9197298
Kingma, D.P., Salimans, T., Welling, M.: Variational dropout and the local reparameterization trick. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc. (2015). https://proceedings.neurips.cc/paper_files/paper/2015/file/bc7316929fe1545bf0b98d114ee3ecb8-Paper.pdf
Knights, J., Moghadam, P., Ramezani, M., Sridharan, S., Fookes, C.: Incloud: incremental learning for point cloud place recognition. In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 8559–8566. IEEE (2022)
Komorowski, J.: MinkLoc3D: point cloud based large-scale place recognition. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 1790–1799 (2021)
Komorowski, J.: Improving point cloud based place recognition with ranking-based loss and large batch training. In: 2022 26th International Conference on Pattern Recognition (ICPR), pp. 3699–3705 (2022). https://doi.org/10.1109/ICPR56361.2022.9956458
Lajoie, P.Y., Beltrame, G.: Self-supervised domain calibration and uncertainty estimation for place recognition. IEEE Robot. Autom. Lett. 8(2), 792–799 (2023). https://doi.org/10.1109/LRA.2022.3232033
Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/9ef2ed4b7fd2c810847ffa5fa85bce38-Paper.pdf
Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)
Maddern, W., Pascoe, G., Linegar, C., Newman, P.: 1 Year, 1000 km: the Oxford RobotCar dataset. Int. J. Robot. Res. (IJRR) 36(1), 3–15 (2017). https://doi.org/10.1177/0278364916679498
Mason, K., Knights, J., Ramezani, M., Moghadam, P., Miller, D.: Uncertainty-aware lidar place recognition in novel environments. arXiv preprint arXiv:2210.01361v1 (2022)
Neal, R.M.: Bayesian Learning for Neural Networks, vol. 118. Springer, Heidelberg (2012)
Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)
Uy, M.A., Lee, G.H.: PointNetVLAD: deep point cloud based retrieval for large-scale place recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)
Vaghi, M., Ballardini, A.L., Fontana, S., Sorrenti, D.G.: Uncertainty-aware DNN for multi-modal camera localization (2023)
Zhang, W., Xiao, C.: PCAN: 3D attention map learning using contextual information for point cloud based retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Vaghi, M., D’Elia, F., Ballardini, A.L., Sorrenti, D.G. (2023). Understanding the Effect of Deep Ensembles in LiDAR-Based Place Recognition. In: Basili, R., Lembo, D., Limongelli, C., Orlandini, A. (eds) AIxIA 2023 – Advances in Artificial Intelligence. AIxIA 2023. Lecture Notes in Computer Science(), vol 14318. Springer, Cham. https://doi.org/10.1007/978-3-031-47546-7_20
Download citation
DOI: https://doi.org/10.1007/978-3-031-47546-7_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-47545-0
Online ISBN: 978-3-031-47546-7
eBook Packages: Computer ScienceComputer Science (R0)