Skip to main content

Understanding the Effect of Deep Ensembles in LiDAR-Based Place Recognition

  • Conference paper
  • First Online:
AIxIA 2023 – Advances in Artificial Intelligence (AIxIA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14318))

  • 906 Accesses

Abstract

Place recognition, the task of recognizing a previously visited location, has a decisive role in the autonomous driving field since it enables rough global localization in GNSS-denied environments. In the last few years, LiDAR-based place recognition and deep learning approaches achieved outstanding results also within challenging scenarios. However, the use of DNN-based methods is still limited due to the safety-critical nature of the task and the difficulty in detecting potential model failures. Determining the uncertainty of DNN-based outputs is a useful technique to discover unreliable predictions. Among the existing approaches, Deep Ensemble represents a popular sampling method to estimate epistemic uncertainty by exploiting multiple models. However, an in-depth investigation of its application for LiDAR-based place recognition is missing and only one approach has been recently proposed [22]. Our ultimate goal is to gain a deeper understanding of the strengths and weaknesses of Deep Ensemble methods. To achieve this, we propose a Deep Ensemble strategy that uses a knowledge-distillation approach and we compare it to [22] by evaluating its recall and failure detection capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amini, A., Schwarting, W., Soleimany, A., Rus, D.: Deep evidential regression. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 14927–14937. Curran Associates, Inc. (2020). https://proceedings.neurips.cc/paper_files/paper/2020/file/aab085461de182608ee9f607f3f7d18f-Paper.pdf

  2. Arandjelovic, R., Gronat, P., Torii, A., Pajdla, T., Sivic, J.: NetVLAD: CNN architecture for weakly supervised place recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  3. Arandjelovic, R., Zisserman, A.: All about VLAD. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1578–1585 (2013)

    Google Scholar 

  4. Cai, K., Lu, C.X., Huang, X.: STUN: self-teaching uncertainty estimation for place recognition. In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6614–6621 (2022). https://doi.org/10.1109/IROS47612.2022.9981546

  5. Cattaneo, D., Vaghi, M., Fontana, S., Ballardini, A.L., Sorrenti, D.G.: Global visual localization in lidar-maps through shared 2D–3D embedding space. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 4365–4371 (2020). https://doi.org/10.1109/ICRA40945.2020.9196859

  6. Cattaneo, D., Vaghi, M., Valada, A.: LCDNet: deep loop closure detection and point cloud registration for lidar slam. IEEE Trans. Rob. 38(4), 2074–2093 (2022). https://doi.org/10.1109/TRO.2022.3150683

    Article  Google Scholar 

  7. Deng, H., Bui, M., Navab, N., Guibas, L., Ilic, S., Birdal, T.: Deep bingham networks: dealing with uncertainty and ambiguity in pose estimation. Int. J. Comput. Vision 130, 1–28 (2022)

    Article  Google Scholar 

  8. Denker, J., LeCun, Y.: Transforming neural-net output levels to probability distributions. In: Lippmann, R., Moody, J., Touretzky, D. (eds.) Advances in Neural Information Processing Systems, vol. 3. Morgan-Kaufmann (1990). https://proceedings.neurips.cc/paper_files/paper/1990/file/7eacb532570ff6858afd2723755ff790-Paper.pdf

  9. Hausler, S., Garg, S., Xu, M., Milford, M., Fischer, T.: Patch-NetVLAD: multi-scale fusion of locally-global descriptors for place recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14141–14152 (2021)

    Google Scholar 

  10. Hermans, A., Beyer, L., Leibe, B.: In defense of the triplet loss for person re-identification. arXiv preprint arXiv:1703.07737 (2017)

  11. Jégou, H., Douze, M., Schmid, C., Pérez, P.: Aggregating local descriptors into a compact image representation. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3304–3311 (2010). https://doi.org/10.1109/CVPR.2010.5540039

  12. Kendall, A., Cipolla, R.: Modelling uncertainty in deep learning for camera relocalization. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 4762–4769 (2016). https://doi.org/10.1109/ICRA.2016.7487679

  13. Kim, G., Park, Y.S., Cho, Y., Jeong, J., Kim, A.: MulRan: multimodal range dataset for urban place recognition. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 6246–6253 (2020). https://doi.org/10.1109/ICRA40945.2020.9197298

  14. Kingma, D.P., Salimans, T., Welling, M.: Variational dropout and the local reparameterization trick. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc. (2015). https://proceedings.neurips.cc/paper_files/paper/2015/file/bc7316929fe1545bf0b98d114ee3ecb8-Paper.pdf

  15. Knights, J., Moghadam, P., Ramezani, M., Sridharan, S., Fookes, C.: Incloud: incremental learning for point cloud place recognition. In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 8559–8566. IEEE (2022)

    Google Scholar 

  16. Komorowski, J.: MinkLoc3D: point cloud based large-scale place recognition. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 1790–1799 (2021)

    Google Scholar 

  17. Komorowski, J.: Improving point cloud based place recognition with ranking-based loss and large batch training. In: 2022 26th International Conference on Pattern Recognition (ICPR), pp. 3699–3705 (2022). https://doi.org/10.1109/ICPR56361.2022.9956458

  18. Lajoie, P.Y., Beltrame, G.: Self-supervised domain calibration and uncertainty estimation for place recognition. IEEE Robot. Autom. Lett. 8(2), 792–799 (2023). https://doi.org/10.1109/LRA.2022.3232033

    Article  Google Scholar 

  19. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/9ef2ed4b7fd2c810847ffa5fa85bce38-Paper.pdf

  20. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  21. Maddern, W., Pascoe, G., Linegar, C., Newman, P.: 1 Year, 1000 km: the Oxford RobotCar dataset. Int. J. Robot. Res. (IJRR) 36(1), 3–15 (2017). https://doi.org/10.1177/0278364916679498

    Article  Google Scholar 

  22. Mason, K., Knights, J., Ramezani, M., Moghadam, P., Miller, D.: Uncertainty-aware lidar place recognition in novel environments. arXiv preprint arXiv:2210.01361v1 (2022)

  23. Neal, R.M.: Bayesian Learning for Neural Networks, vol. 118. Springer, Heidelberg (2012)

    Google Scholar 

  24. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  25. Uy, M.A., Lee, G.H.: PointNetVLAD: deep point cloud based retrieval for large-scale place recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  26. Vaghi, M., Ballardini, A.L., Fontana, S., Sorrenti, D.G.: Uncertainty-aware DNN for multi-modal camera localization (2023)

    Google Scholar 

  27. Zhang, W., Xiao, C.: PCAN: 3D attention map learning using contextual information for point cloud based retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Vaghi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vaghi, M., D’Elia, F., Ballardini, A.L., Sorrenti, D.G. (2023). Understanding the Effect of Deep Ensembles in LiDAR-Based Place Recognition. In: Basili, R., Lembo, D., Limongelli, C., Orlandini, A. (eds) AIxIA 2023 – Advances in Artificial Intelligence. AIxIA 2023. Lecture Notes in Computer Science(), vol 14318. Springer, Cham. https://doi.org/10.1007/978-3-031-47546-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47546-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47545-0

  • Online ISBN: 978-3-031-47546-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics