Skip to main content

Performance Evaluation of Depth Completion Neural Networks for Various RGB-D Camera Technologies in Indoor Scenarios

  • Conference paper
  • First Online:
AIxIA 2023 – Advances in Artificial Intelligence (AIxIA 2023)

Abstract

RGB-D cameras have become essential in robotics for accurate perception and object recognition, enabling robots to navigate environments, avoid obstacles, and manipulate objects precisely. Such cameras, besides RGB information, allow the capture of an additional image that encodes the distance of each point in the scene from the camera. Popular depth acquisition techniques include active stereoscopic, which triangulates two camera views, and Time-of-Flight (T-o-F), based on infrared laser patterns. Despite different technologies, none of them is yet able to provide accurate depth information on the entire image due to various factors such as sunlight, reflective surfaces or high distances from the camera. This leads to noisy or incomplete depth images. Neural network-based solutions have been researched for depth completion, aiming to create dense depth maps using RGB images and sparse depth. This paper presents a comparison of the data provided by different depth-sensing technologies, highlighting their pros and cons in two main benchmark setups. After an analysis of the sensors’ accuracy under different conditions, several state-of-the-art neural networks have been evaluated in an indoor scenario to assess if it is possible to improve the quality of the raw depth images provided by each sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lidar camera l515. https://www.intelrealsense.com/lidar-camera-l515/

  2. Stereo depth solution from intel realsense. https://www.intelrealsense.com/stereo-depth/

  3. Chen, Y., Yang, B., Liang, M., Urtasun, R.: Learning joint 2D–3D representations for depth completion. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10023–10032 (2019)

    Google Scholar 

  4. Cheng, X., Wang, P., Yang, R.: Depth estimation via affinity learned with convolutional spatial propagation network. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 103–119 (2018)

    Google Scholar 

  5. Dimitrievski, M., Veelaert, P., Philips, W.: Learning morphological operators for depth completion. In: Blanc-Talon, J., Helbert, D., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2018. LNCS, vol. 11182, pp. 450–461. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01449-0_38

    Chapter  Google Scholar 

  6. Eldesokey, A., Felsberg, M., Khan, F.S.: Propagating confidences through CNNs for sparse data regression. arXiv preprint arXiv:1805.11913 (2018)

  7. Garnelo, M., et al.: Conditional neural processes. In: International Conference on Machine Learning, pp. 1704–1713. PMLR (2018)

    Google Scholar 

  8. Hu, J., et al.: Deep depth completion from extremely sparse data: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 45, 8244–8264 (2022)

    Google Scholar 

  9. Hu, M., Wang, S., Li, B., Ning, S., Fan, L., Gong, X.: PENet: towards precise and efficient image guided depth completion. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 13656–13662. IEEE (2021)

    Google Scholar 

  10. Huang, Z., Fan, J., Cheng, S., Yi, S., Wang, X., Li, H.: HMS-Net: hierarchical multi-scale sparsity-invariant network for sparse depth completion. IEEE Trans. Image Process. 29, 3429–3441 (2019)

    Article  MATH  Google Scholar 

  11. Imran, S., Long, Y., Liu, X., Morris, D.: Depth coefficients for depth completion. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12438–12447. IEEE (2019)

    Google Scholar 

  12. Krogius, M., Haggenmiller, A., Olson, E.: Flexible layouts for fiducial tags. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1898–1903. IEEE (2019)

    Google Scholar 

  13. Ku, J., Harakeh, A., Waslander, S.L.: In defense of classical image processing: Fast depth completion on the CPU. In: 2018 15th Conference on Computer and Robot Vision (CRV), pp. 16–22. IEEE (2018)

    Google Scholar 

  14. Lee, S., Lee, J., Kim, D., Kim, J.: Deep architecture with cross guidance between single image and sparse lidar data for depth completion. IEEE Access 8, 79801–79810 (2020)

    Article  Google Scholar 

  15. Li, A., Yuan, Z., Ling, Y., Chi, W., Zhang, C.: A multi-scale guided cascade hourglass network for depth completion. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 32–40 (2020)

    Google Scholar 

  16. Lu, K., Barnes, N., Anwar, S., Zheng, L.: Depth completion auto-encoder. In: 2022 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW), pp. 63–73. IEEE (2022)

    Google Scholar 

  17. Ma, F., Karaman, S.: Sparse-to-dense: depth prediction from sparse depth samples and a single image. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 4796–4803. IEEE (2018)

    Google Scholar 

  18. Nazir, D., Pagani, A., Liwicki, M., Stricker, D., Afzal, M.Z.: SemAttNet: toward attention-based semantic aware guided depth completion. IEEE Access 10, 120781–120791 (2022)

    Article  Google Scholar 

  19. Park, J., Joo, K., Hu, Z., Liu, C.-K., So Kweon, I.: Non-local spatial propagation network for depth completion. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 120–136. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_8

    Chapter  Google Scholar 

  20. Qi, F., Han, J., Wang, P., Shi, G., Li, F.: Structure guided fusion for depth map inpainting. Pattern Recogn. Lett. 34(1), 70–76 (2013)

    Article  Google Scholar 

  21. Richardt, C., Stoll, C., Dodgson, N.A., Seidel, H.P., Theobalt, C.: Coherent spatiotemporal filtering, upsampling and rendering of RGBZ videos. In: Computer Graphics Forum, vol. 31, pp. 247–256. Wiley Online Library (2012)

    Google Scholar 

  22. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. ECCV 5(7576), 746–760 (2012)

    Google Scholar 

  23. Uhrig, J., Schneider, N., Schneider, L., Franke, U., Brox, T., Geiger, A.: Sparsity invariant CNNs. In: 2017 International Conference on 3D Vision (3DV), pp. 11–20. IEEE (2017)

    Google Scholar 

  24. Van Gansbeke, W., Neven, D., De Brabandere, B., Van Gool, L.: Sparse and noisy lidar completion with RGB guidance and uncertainty. In: 2019 16th International Conference on Machine Vision Applications (MVA), pp. 1–6. IEEE (2019)

    Google Scholar 

  25. Zennaro, S., et al.: Performance evaluation of the 1st and 2nd generation Kinect for multimedia applications. In: 2015 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Terreran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Castellano, R., Terreran, M., Ghidoni, S. (2023). Performance Evaluation of Depth Completion Neural Networks for Various RGB-D Camera Technologies in Indoor Scenarios. In: Basili, R., Lembo, D., Limongelli, C., Orlandini, A. (eds) AIxIA 2023 – Advances in Artificial Intelligence. AIxIA 2023. Lecture Notes in Computer Science(), vol 14318. Springer, Cham. https://doi.org/10.1007/978-3-031-47546-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47546-7_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47545-0

  • Online ISBN: 978-3-031-47546-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics