Skip to main content

ReConf: An Automatic Context-Based Software Reconfiguration Tool for Autonomous Vehicles Using Answer-Set Programming

  • Conference paper
  • First Online:
AIxIA 2023 – Advances in Artificial Intelligence (AIxIA 2023)

Abstract

A significant challenge in the domain of autonomous vehicles is to ensure a reliable and safe operation in a multitude of contexts. As a consequence, autonomous vehicles must be capable of handling various context changes, such as changing weather conditions as well as software and hardware faults, without human support. To address this issue, we introduce a context-based software configuration tool for autonomous vehicles, called ReConf, which is embedded into Aptus, a generic framework for extending system architectures of autonomous vehicles with a self-managing functionality proposed in previous work. ReConf reconfigures the autonomous driving system in case the context changes by means of a reasoning component based on answer-set programming in order to determine system configurations that fulfill the requirements of the current context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the name “Aptus” was not used previously [17] and is newly introduced here.

References

  1. APTIV, Audi, Baidu, BMW, Continental, Daimler, FCA, HERE, Infineon, Intel, Volkswagen: Safety First for Automated Driving (2019). White paper

    Google Scholar 

  2. Baral, C.: Knowledge Representation. Reasoning and Declarative Problem Solving. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  3. Beck, H., Eiter, T., Folie, C.: Ticker: a system for incremental ASP-based stream reasoning. Theory Pract. Logic Program. 17(5–6), 744–763 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gat, E.: Three-Layer Architectures, pp. 195–210. AAAI Press, Washington (1998)

    Google Scholar 

  5. Gebser, M., Grote, T., Kaminski, R., Obermeier, P., Sabuncu, O., Schaub, T.: Stream reasoning with answer set programming: Preliminary report. In: Proceedings of the Thirteenth International Conference on Principles of Knowledge Representation and Reasoning (KR 2012), pp. 613–617 (2012)

    Google Scholar 

  6. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Intelligence and Machine Learning, Morgan & Claypool Publishers, Washington (2012)

    MATH  Google Scholar 

  7. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving with clingo. Theory Pract. Logic Program. 19(1), 27–82 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: a conflict-driven answer set solver. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 260–265. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72200-7_23

    Chapter  Google Scholar 

  9. Gebser, M., Schaub, T., Thiele, S.: GrinGo: a new grounder for answer set programming. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 266–271. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72200-7_24

    Chapter  Google Scholar 

  10. Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design of Intelligent Agents: The Answer-Set Programming Approach. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  11. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceedings of the 5th International Conference and Symposium on Logic Programming (ICLP/SLP 1988), pp. 1070–1080. MIT Press (1988)

    Google Scholar 

  12. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Gener. Comput. 9, 365–385 (1991)

    Article  MATH  Google Scholar 

  13. Horn, P.: Autonomic Computing: IBM’s Perspective on the State of Information Technology (2001). White paper

    Google Scholar 

  14. IBM: An Architectural Blueprint for Autonomic Computing (2005). White paper

    Google Scholar 

  15. Kain, T.: Towards a Reliable System Architecture for Autonomous Vehicles,: Master’s Thesis. Technische Universität Wien, Institute of Logic and Computation (2020)

    Google Scholar 

  16. Kain, T.: Towards a Generic Framework for Extending System Architectures of Autonomous Vehicles with a Self-Managing Functionality. Dissertation, Technische Universität Wien (2023). In preparation

    Google Scholar 

  17. Kain, T., Müller, J.S., Mundhenk, P., Tompits, H., Wesche, M., Decke, H.: Towards a reliable and context-based system architecture for autonomous vehicles. In: Proceedings of the 2nd International Workshop on Autonomous Systems Design (ASD 2020), pp. 1:1–1:7 (2020)

    Google Scholar 

  18. Kain, T., Tompits, H., Müller, J.S., Wesche, M., Martinez Flores, Y.A., Decke, H.: Optimizing the placement of applications in autonomous vehicles. In: Proceedings of the 30th European Safety and Reliability Conference (ESREL) (2020)

    Google Scholar 

  19. Kampmann, A., et al.: A dynamic service-oriented software architecture for highly automated vehicles. In: Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (ITSC 2019), pp. 2101–2108 (2019)

    Google Scholar 

  20. Leone, N., et al.: The DLV system for knowledge representation and reasoning. ACM Trans. Comput. Log. 7(3), 499–562 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lucas Bourneuf: clyngor. https://github.com/Aluriak/clyngor

  22. Mallozzi, P., Pelliccione, P., Knauss, A., Berger, C., Mohammadiha, N.: Autonomous vehicles: state of the art, future trends, and challenges. In: Automotive Systems and Software Engineering, pp. 347–367. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12157-0_16

    Chapter  Google Scholar 

  23. Orlov, S.: AutoKonf: Forschung und Technologie für automatisiertes und vernetztes Fahren. Talk presented at the Fachtagung “Automatisiertes und vernetztes Fahren", Berlin (2017)

    Google Scholar 

  24. Parashar, M., Hariri, S.: Autonomic computing: an overview. In: Banâtre, J.P., Fradet, P., Giavitto, J.L., Michel, O. (eds.) UPP 2004. LNCS, vol. 3566, pp. 257–269. Springer, Berlin (2005). https://doi.org/10.1007/11527800_20

    Chapter  Google Scholar 

  25. SAE International: Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles (2021). SAE Standard J3016

    Google Scholar 

  26. Tang, C., Steinder, M., Spreitzer, M., Pacifici, G.: A Scalable application placement controller for enterprise data centers. In: Proceedings of the 16th International Conference on World Wide Web (WWW 2007), pp. 331–340 (2007)

    Google Scholar 

  27. Weiss, G., Grigoleit, F., Struss, P.: Context modeling for dynamic configuration of automotive functions. In: Proceedings of the 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013), pp. 839–844 (2013)

    Google Scholar 

  28. Zeller, M., Weiss, G., Eilers, D., Knorr, R.: A multi-layered control architecture for self-management in adaptive automotive systems. In: Proceedings of the 2009 International Conference on Adaptive and Intelligent Systems (ICAIS 2009), pp. 63–68 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Kain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kain, T., Tompits, H. (2023). ReConf: An Automatic Context-Based Software Reconfiguration Tool for Autonomous Vehicles Using Answer-Set Programming. In: Basili, R., Lembo, D., Limongelli, C., Orlandini, A. (eds) AIxIA 2023 – Advances in Artificial Intelligence. AIxIA 2023. Lecture Notes in Computer Science(), vol 14318. Springer, Cham. https://doi.org/10.1007/978-3-031-47546-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47546-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47545-0

  • Online ISBN: 978-3-031-47546-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics