Skip to main content

A Structure-Sensitive Translation from Hybrid to Numeric Planning

  • Conference paper
  • First Online:
AIxIA 2023 – Advances in Artificial Intelligence (AIxIA 2023)

Abstract

pddl+ is an expressive planning formalism that enables the modelling of hybrid domains with both discrete and continuous dynamics. However, its expressiveness makes this language notoriously difficult to handle natively. To address this challenge, translations from time-discrete pddl+ into numeric pddl2.1 have been proposed as a way to reframe the rich expressiveness of pddl+ into a simpler and more manageable formalism. In this work, we first analyse existing translations and provide a means to compare them in terms of induced state space and the size of the reformulated tasks. Secondly, we propose a novel translation leveraging the structure of the problem to generate a compact reformulation. Our experimental results indicate that the novel translation outperforms the existing ones on a range of benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    \(\dot{x} = y\) denotes that the first derivative of x is y.

  2. 2.

    Conditional effects are an important feature in planning formalisms in which the effects of an action are state-dependent [2, 12].

References

  1. Alaboud, F.K., Coles, A.: Personalized medication and activity planning in PDDL+. In: Proceedings of ICAPS, pp. 492–500 (2019)

    Google Scholar 

  2. Anderson, C.R., Smith, D.E., Weld, D.S.: Conditional effects in graphplan. In: Proceedings of AIPS, pp. 44–53. AAAI (1998)

    Google Scholar 

  3. Bertolucci, R., Capitanelli, A., Maratea, M., Mastrogiovanni, F., Vallati, M.: Automated planning encodings for the manipulation of articulated objects in 3D with gravity. In: Proceedings of AIxIA 2019, pp. 135–150 (2019)

    Google Scholar 

  4. Bonassi, L., De Giacomo, G., Favorito, M., Fuggitti, F., Gerevini, A.E., Scala, E.: Planning for temporally extended goals in pure-past linear temporal logic. In: Proceedings of ICAPS, vol. 33, pp. 61–69 (2023)

    Google Scholar 

  5. Bonassi, L., Gerevini, A.E., Scala, E.: Planning with qualitative action-trajectory constraints in PDDL. In: Proceedings of IJCAI, pp. 4606–4613 (2022)

    Google Scholar 

  6. Cardellini, M., Maratea, M., Vallati, M., Boleto, G., Oneto, L.: In-station train dispatching: a PDDL+ planning approach. In: Proceedings of ICAPS, pp. 450–458 (2021)

    Google Scholar 

  7. Della Penna, G., Magazzeni, D., Mercorio, F.: A universal planning system for hybrid domains. Appl. Intell. 36, 932–959 (2012)

    Article  Google Scholar 

  8. Fox, M., Howey, R., Long, D.: Validating plans in the context of processes and exogenous events. In: Proceedings of AAAI, pp. 1151–1156 (2005)

    Google Scholar 

  9. Fox, M., Long, D.: PDDL2.1: an extension to PDDL for expressing temporal planning domains. JAIR 20, 61–124 (2003)

    Article  MATH  Google Scholar 

  10. Fox, M., Long, D.: Modelling mixed discrete-continuous domains for planning. JAIR 27, 235–297 (2006)

    Article  MATH  Google Scholar 

  11. Franco, S., Lindsay, A., Vallati, M., McCluskey, T.L.: An innovative heuristic for planning-based urban traffic control. In: Proceedings of ICCS, pp. 181–193 (2018)

    Google Scholar 

  12. Gazen, B.C., Knoblock, C.A.: Combining the expressivity of UCPOP with the efficiency of Graphplan. In: Steel, S., Alami, R. (eds.) ECP 1997. LNCS, vol. 1348, pp. 221–233. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63912-8_88

    Chapter  Google Scholar 

  13. Gerevini, A., Haslum, P., Long, D., Saetti, A., Dimopoulos, Y.: Deterministic planning in the fifth international planning competition: PDDL3 and experimental evaluation of the planners. AIJ 173(5–6), 619–668 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Henzinger, T.A.: The theory of hybrid automata. In: Proceedings 11th Annual IEEE Symposium on Logic in Computer Science, pp. 278–292 (1996). https://doi.org/10.1109/LICS.1996.561342

  15. Kerschke, P., Hoos, H.H., Neumann, F., Trautmann, H.: Automated algorithm selection: survey and perspectives. Evol. Comput. 27(1), 3–45 (2019)

    Article  Google Scholar 

  16. Percassi, F., Bhatnagar, S., Guo, R., McCabe, K., McCluskey, L., Vallati, M.: An efficient heuristic for AI-based urban traffic control. In: Proceedings of MT-ITS (2023)

    Google Scholar 

  17. Percassi, F., Scala, E., Vallati, M.: A sound (but incomplete) polynomial translation from discretised PDDL+ to numeric planning. In: Proceedings of AIxIA 2021 (2021)

    Google Scholar 

  18. Percassi, F., Scala, E., Vallati, M.: The power of reformulation: from validation to planning in PDDL+. In: Proceedings of ICAPS, vol. 32, pp. 288–296 (2022)

    Google Scholar 

  19. Percassi, F., Scala, E., Vallati, M.: A practical approach to discretised PDDL+ problems by translation to numeric planning. JAIR 76, 115–162 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  20. Percassi, F., Scala, E., Vallati, M.: Fixing plans for PDDL+ problems: theoretical and practical implications. In: Proceedings of ICAPS, vol. 33, pp. 324–333 (2023)

    Google Scholar 

  21. Piotrowski, W., Sher, Y., Grover, S., Stern, R., Mohan, S.: Heuristic search for physics-based problems: angry birds in PDDL+. In: Proceedings of ICAPS, pp. 518–526 (2023)

    Google Scholar 

  22. Say, B.: Robust metric hybrid planning in stochastic nonlinear domains using mathematical optimization. In: Proceedings of ICAPS, vol. 33, pp. 375–383 (2023)

    Google Scholar 

  23. Scala, E., Haslum, P., Thiébaux, S., Ramírez, M.: Subgoaling techniques for satisficing and optimal numeric planning. JAIR 68, 691–752 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Shin, J., Davis, E.: Processes and continuous change in a SAT-based planner. AIJ 166(1–2), 194–253 (2005)

    MathSciNet  MATH  Google Scholar 

  25. Vallati, M., Magazzeni, D., Schutter, B.D., Chrpa, L., McCluskey, T.L.: Efficient macroscopic urban traffic models for reducing congestion: a PDDL+ planning approach. In: Proceedings of AAAI 2016, pp. 3188–3194 (2016)

    Google Scholar 

Download references

Acknowledgements

Francesco Percassi and Mauro Vallati were supported by a UKRI Future Leaders Fellowship [grant number MR/T041196/1]. Enrico Scala has been partially supported by AIPlan4EU, a project funded by EU Horizon 2020 research and innovation programme under GA n. 101016442.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Francesco Percassi , Enrico Scala or Mauro Vallati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Percassi, F., Scala, E., Vallati, M. (2023). A Structure-Sensitive Translation from Hybrid to Numeric Planning. In: Basili, R., Lembo, D., Limongelli, C., Orlandini, A. (eds) AIxIA 2023 – Advances in Artificial Intelligence. AIxIA 2023. Lecture Notes in Computer Science(), vol 14318. Springer, Cham. https://doi.org/10.1007/978-3-031-47546-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47546-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47545-0

  • Online ISBN: 978-3-031-47546-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics