Skip to main content

SimCLR-Inception: An Image Representation Learning and Recognition Model for Robot Vision

  • Conference paper
  • First Online:
Pattern Recognition (ACPR 2023)

Abstract

Effective feature extraction is a key component in image recognition for robot vision. This paper presents an improved contrastive learning-based image feature extraction and classification model, termed SimCLR-Inception, to realize effective and accurate image recognition. By using the SimCLR, this model generates positive and negative image samples from unlabeled data through image augmentation and then minimizes the contrastive loss function to learn the image representations by exploring more underlying structure information. Furthermore, this proposed model uses the Inception V3 model to classify the image representations for improving recognition accuracy. The SimCLR-Inception model is compared with four representative image recognition models, including LeNet, VGG16, Inception V3, and EfficientNet V2 on a real-world Multi-class Weather (MW) data set. We use four representative metrics: accuracy, precision, recall, and F1-Score, to verify the performance of different models for image recognition. We show that the presented SimCLR-Inception model achieves all the successful runs and gives almost the best results. The accuracy is at least \(4\%\) improved by the Inception V3 model. It suggests that this model would work better for robot vision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://data.mendeley.com/datasets/4drtyfjtfy/1.

References

  1. Albelwi, S.: Survey on self-supervised learning: auxiliary pretext tasks and contrastive learning methods in imaging. Entropy 24(4), 551 (2022)

    Article  Google Scholar 

  2. Bae, H., et al.: IROS 2019 lifelong robotic vision: object recognition challenge [competitions]. IEEE Robot. Autom. Mag. 27(2), 11–16 (2020)

    Article  Google Scholar 

  3. Cao, M.: Face recognition robot system based on intelligent machine vision image recognition. Int. J. Syst. Assur. Eng. Manage. 14(2), 708–717 (2023)

    Article  Google Scholar 

  4. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)

    Google Scholar 

  5. Dong, Y., Liu, Q., Du, B., Zhang, L.: Weighted feature fusion of convolutional neural network and graph attention network for hyperspectral image classification. IEEE Trans. Image Process. 31, 1559–1572 (2022)

    Article  Google Scholar 

  6. Falcon, W., Cho, K.: A framework for contrastive self-supervised learning and designing a new approach. arXiv preprint arXiv:2009.00104 (2020)

  7. Gao, Q., Liu, J., Ju, Z.: Hand gesture recognition using multimodal data fusion and multiscale parallel convolutional neural network for human-robot interaction. Expert Syst. 38(5), e12490 (2021)

    Article  Google Scholar 

  8. Grill, J.B., et al.: Bootstrap your own latent-a new approach to self-supervised learning. In: Advances in Neural Information Processing Systems, vol. 33 (2020)

    Google Scholar 

  9. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006). IEEE (2006)

    Google Scholar 

  10. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  11. Kim, H.E., Cosa-Linan, A., Santhanam, N., Jannesari, M., Maros, M.E., Ganslandt, T.: Transfer learning for medical image classification: a literature review. BMC Med. Imaging 22(1), 69 (2022)

    Article  Google Scholar 

  12. Lai, X., et al.: Semi-supervised semantic segmentation with directional context-aware consistency. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2021)

    Google Scholar 

  13. Lan, R., Sun, L., Liu, Z., Lu, H., Pang, C., Luo, X.: MADNet: a fast and lightweight network for single-image super resolution. IEEE Trans. Cybern. 51(3), 1443–1453 (2020)

    Article  Google Scholar 

  14. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  15. Li, S., et al.: An indoor autonomous inspection and firefighting robot based on slam and flame image recognition. Fire 6(3), 93 (2023)

    Article  Google Scholar 

  16. Li, Y., Yang, S., Zheng, Y., Lu, H.: Improved point-voxel region convolutional neural network: 3D object detectors for autonomous driving. IEEE Trans. Intell. Transp. Syst. 23(7), 9311–9317 (2021)

    Article  Google Scholar 

  17. Oluwafemi, A.G., Zenghui, W.: Multi-class weather classification from still image using said ensemble method. In: 2019 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA). IEEE (2019)

    Google Scholar 

  18. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  19. Singh, P., Chaudhury, S., Panigrahi, B.K.: Hybrid MPSO-CNN: multi-level particle swarm optimized hyperparameters of convolutional neural network. Swarm Evol. Comput. 63, 100863 (2021)

    Article  Google Scholar 

  20. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  21. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  22. Tan, M., Le, Q.: EfficientNetV2: smaller models and faster training. In: International Conference on Machine Learning (2021)

    Google Scholar 

  23. Tan, Z., Teng, Z.: Improving generalization of image recognition with multi-branch generation network and contrastive learning. Multimedia Tools Appl. 82(18), 1–21 (2023)

    Article  Google Scholar 

  24. Wan, S., Goudos, S.: Faster R-CNN for multi-class fruit detection using a robotic vision system. Comput. Networks 168, 107036 (2020)

    Article  Google Scholar 

  25. Wang, J., Bertasius, G., Tran, D., Torresani, L.: Long-short temporal contrastive learning of video transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022)

    Google Scholar 

  26. Xie, E., Ding, J., Wang, W., Zhan, X., Xu, H., Sun, P., Li, Z., Luo, P.: Detco: Unsupervised contrastive learning for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2021)

    Google Scholar 

  27. Xu, F., Xu, F., Xie, J., Pun, C.M., Lu, H., Gao, H.: Action recognition framework in traffic scene for autonomous driving system. IEEE Trans. Intell. Transp. Syst. 23(11), 22301–22311 (2021)

    Article  Google Scholar 

  28. Yang, J., et al.: Unified contrastive learning in image-text-label space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022)

    Google Scholar 

  29. Zeng, D., et al.: Positional contrastive learning for volumetric medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 221–230. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_21

    Chapter  Google Scholar 

  30. Zhou, W., Wang, H., Wan, Z.: Ore image classification based on improved CNN. Comput. Electr. Eng. 99, 107819 (2022)

    Article  Google Scholar 

Download references

Acknowledgement

We acknowledge the funding support from the National Natural Science Foundation of China (71974069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jin, M., Zhang, Y., Cheng, X., Ma, L., Hu, F. (2023). SimCLR-Inception: An Image Representation Learning and Recognition Model for Robot Vision. In: Lu, H., Blumenstein, M., Cho, SB., Liu, CL., Yagi, Y., Kamiya, T. (eds) Pattern Recognition. ACPR 2023. Lecture Notes in Computer Science, vol 14406. Springer, Cham. https://doi.org/10.1007/978-3-031-47634-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47634-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47633-4

  • Online ISBN: 978-3-031-47634-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics