Skip to main content

Sarcasm Detection in News Headlines Using Evidential Deep Learning-Based LSTM and GRU

  • Conference paper
  • First Online:
Pattern Recognition (ACPR 2023)

Abstract

Sarcasm has become quite inter-related with the day to day life of all. In news robust sarcasm is often used to grab the attention of the viewers. This research aims to detect sarcasm using Evidential deep learning. This technique uses uncertainty estimations for identifying the sentiments from news headlines dataset. Also, LSTM and GRU have been used with Evidential deep learning approach. The purpose of using LSTM is that it can classify texts from headlines in order to analysis the sentiments. Moreover, we have used GRU which is an recurrent neural networks (RNN) and it effectively models sequential data. The architecture of the GRU network is ideally suited for identifying dependencies and extended contextual relationships within news headings. Overall, our proposed model uses Evidential deep learning based LSTM and GRU to identify the sentiments of robust sarcasms from news headlines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chaudhari, P., Chandankhede, C.: Literature survey of sarcasm detection. In: 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), pp. 2041–2046 (2017)

    Google Scholar 

  2. Krishnan, N., Rethnaraj, J., Saravanan, M.: Sentiment topic sarcasm mixture model to distinguish sarcasm prevalent topics based on the sentiment bearing words in the tweets. J. Amb. Intell. Human. Comput. 12, 6801–6810 (2021)

    Article  Google Scholar 

  3. Goel, P., Jain, R., Nayyar, A., Singhal, S., Srivastava, M.: Sarcasm detection using deep learning and ensemble learning. Multimed. Tools App. 81, 43229–43252 (2022)

    Article  Google Scholar 

  4. Jena, A., Sinha, A., Agarwal, R.: C-Net: contextual network for sarcasm detection (2020)

    Google Scholar 

  5. Potamias, R., Siolas, G., Stafylopatis, A.: A Transformer-based approach to Irony and Sarcasm detection (2019)

    Google Scholar 

  6. Rajadesingan, A., Zafarani, R., Liu, H.: Sarcasm detection on twitter: a behavioral modeling approach. In: WSDM 2015 - Proceedings Of The 8th ACM International Conference on Web Search and Data Mining, pp. 97–106 (2015)

    Google Scholar 

  7. Bouazizi, M., Ohtsuki, T.: A pattern-based approach for sarcasm detection on twitter. IEEE Access 4, 5477–5488 (2016)

    Article  Google Scholar 

  8. Ptácek, T., Habernal, I., Hong, J.: Sarcasm Detection on Czech and English Twitter. In: International Conference on Computational Linguistics (2014)

    Google Scholar 

  9. Sarsam, S., Al-Samarraie, H., Alzahrani, A., Wright, B.: Sarcasm detection using machine learning algorithms in Twitter: a systematic review. Int. J. Mark. Res. 62, 578–598 (2020)

    Article  Google Scholar 

  10. Sharma, D., Singh, B., Agarwal, S., Pachauri, N., Alhussan, A., Abdallah, H.: Sarcasm detection over social media platforms using hybrid ensemble model with fuzzy logic. Electronics 12, 937 (2023)

    Article  Google Scholar 

  11. Islam, M., et al.: RNN variants vs transformer variants: uncertainty in text classification with monte Carlo dropout. In: 2022 25th International Conference On Computer And Information Technology (ICCIT), pp. 7–12 (2022)

    Google Scholar 

  12. Wang, C., et al.: Uncertainty estimation for stereo matching based on evidential deep learning. Pattern Recogn. 124, 108498 (2022)

    Article  Google Scholar 

  13. Bao, W., Yu, Q., Kong, Y.: Evidential deep learning for open set action recognition. In: Proceedings Of The IEEE/CVF International Conference on Computer Vision (ICCV), pp. 13349–13358 (2021)

    Google Scholar 

  14. Capellier, E., Davoine, F., Cherfaoui, V., Li, Y.: Evidential deep learning for arbitrary LIDAR object classification in the context of autonomous driving. In: 2019 IEEE Intelligent Vehicles Symposium (IV), pp. 1304–1311 (2019)

    Google Scholar 

  15. Ulmer, D., Hardmeier, C., Frellsen, J.: A Survey on Evidential Deep Learning Methods For Uncertainty Estimation, Prior and Posterior Networks (2023)

    Google Scholar 

  16. Misra, R., Arora, P.: Sarcasm detection using news headlines dataset. AI Open. 4, 13–18 (2023)

    Article  Google Scholar 

  17. Pietrantuono, R., Popov, P., Russo, S.: Reliability assessment of service-based software under operational profile uncertainty. Reliab. Eng. Syst. Saf. 204, 107193 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Shamsul Rayhan Chy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chy, M.S.R., Chy, M.S.R., Mahin, M.R.H., Rahman, M.M., Hossain, M.S., Rasel, A.A. (2023). Sarcasm Detection in News Headlines Using Evidential Deep Learning-Based LSTM and GRU. In: Lu, H., Blumenstein, M., Cho, SB., Liu, CL., Yagi, Y., Kamiya, T. (eds) Pattern Recognition. ACPR 2023. Lecture Notes in Computer Science, vol 14406. Springer, Cham. https://doi.org/10.1007/978-3-031-47634-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47634-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47633-4

  • Online ISBN: 978-3-031-47634-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics