Skip to main content

Fingerprint Indexing with Minutiae-Aided Fingerprint Multiscale Representation

  • Conference paper
  • First Online:
Pattern Recognition (ACPR 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14406))

Included in the following conference series:

  • 241 Accesses

Abstract

The huge fingerprint database limits the speed of large-scale fingerprint identification, which can be alleviated by fingerprint indexing. The previous fixed-length representation used for fingerprint indexing achieves unsatisfactory performance due to no good use of fingerprint domain knowledge. Inspired by some attempts to introduce minutiae information, in this paper, we propose a tailored framework to extract the minutiae-aided fingerprint multiscale representation for fingerprint indexing. We design Minutiae Distribution and Directions Map (MDDM) to encode the information contained in minutiae. Inputting into the network along with the fingerprint images, the MDDM guide the network to pay more attention to the minutiae information. Considering the deep features with high resolution contain more small object information, i.e., the minutiae, we introduce the tailored Multiscale Feature Fusion (MFF) module to better use the semantic information in different layers. Extensive experiments show that the proposed fixed-length representation achieves better indexing performance on all benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhanu, B., Tan, X.: A triplet based approach for indexing of fingerprint database for identification. In: Bigun, J., Smeraldi, F. (eds.) AVBPA 2001. LNCS, vol. 2091, pp. 205–210. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45344-X_29

  2. Bhanu, B., Tan, X.: Fingerprint indexing based on novel features of minutiae triplets. IEEE Trans. Pattern Anal. Mach. Intell. 25(5), 616–622 (2003). https://doi.org/10.1109/TPAMI.2003.1195995

    Article  Google Scholar 

  3. Cao, K., Jain, A.K.: Fingerprint indexing and matching: an integrated approach. In: 2017 IEEE International Joint Conference on Biometrics, pp. 437–445 (2017). https://doi.org/10.1109/BTAS.2017.8272728

  4. Cao, K., Jain, A.K.: Automated latent fingerprint recognition. IEEE Trans. Pattern Anal. Mach. Intell. 41(4), 788–800 (2019). https://doi.org/10.1109/TPAMI.2018.2818162

    Article  Google Scholar 

  5. Cao, K., Nguyen, D., Tymoszek, C., Jain, A.K.: End-to-end latent fingerprint search. IEEE Trans. Inf. Forensics Secur. 15, 880–894 (2020). https://doi.org/10.1109/TIFS.2019.2930487

    Article  Google Scholar 

  6. Cappelli, R., Ferrara, M., Maltoni, D.: Minutia cylinder-code: a new representation and matching technique for fingerprint recognition. IEEE Trans. Pattern Anal. Mach. Intell. 32(12), 2128–2141 (2010). https://doi.org/10.1109/TPAMI.2010.52

    Article  Google Scholar 

  7. Engelsma, J.J., Cao, K., Jain, A.K.: Learning a fixed-length fingerprint representation. IEEE Trans. Pattern Anal. Mach. Intell. 43(6), 1981–1997 (2021). https://doi.org/10.1109/TPAMI.2019.2961349

    Article  Google Scholar 

  8. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, vol. 15, pp. 315–323 (2011). https://doi.org/10.1109/IWAENC.2016.7602891

  9. Gu, S., Feng, J., Lu, J., Zhou, J.: Latent fingerprint registration via matching densely sampled points. IEEE Trans. Inf. Forensics Secur. 16, 1231–1244 (2021). https://doi.org/10.1109/TIFS.2020.3032041

    Article  Google Scholar 

  10. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.B.: Momentum contrast for unsupervised visual representation learning. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9726–9735 (2020). https://doi.org/10.1109/CVPR42600.2020.00975

  11. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  12. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd International Conference on Machine Learning, vol. 37, pp. 448–456 (2015)

    Google Scholar 

  13. Jain, A.K., Prabhakar, S., Hong, L., Pankanti, S.: Fingercode: a filterbank for fingerprint representation and matching. In: IEEE Conference on Computer Vision and Pattern Recognition, p. 2187 (1999). https://doi.org/10.1109/CVPR.1999.784628

  14. Jiang, X., Yau, W.: Fingerprint minutiae matching based on the local and global structures. In: 15th International Conference on Pattern Recognition, pp. 6038–6041 (2000). https://doi.org/10.1109/ICPR.2000.906252

  15. Leung, K., Leung, C.H.: Improvement of fingerprint retrieval by a statistical classifier. IEEE Trans. Inf. Forensics Secur. 6(1), 59–69 (2011). https://doi.org/10.1109/TIFS.2010.2100382

    Article  Google Scholar 

  16. Li, R., Song, D., Liu, Y., Feng, J.: Learning global fingerprint features by training a fully convolutional network with local patches. In: 2019 International Conference on Biometrics, pp. 1–8 (2019). https://doi.org/10.1109/ICB45273.2019.8987387

  17. Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, pp. 936–944 (2017). https://doi.org/10.1109/CVPR.2017.106

  18. Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 936–944 (2017). https://doi.org/10.1109/CVPR.2017.106

  19. Liu, B., Feng, J.: Palmprint orientation field recovery via attention-based generative adversarial network. Neurocomputing 438, 1–13 (2021). https://doi.org/10.1016/j.neucom.2021.01.049

    Article  Google Scholar 

  20. Liu, B., Wang, Z., Feng, J.: Palmnet: a robust palmprint minutiae extraction network. In: Pattern Recognition - 6th Asian Conference, ACPR, vol. 13188, pp. 459–473 (2021). https://doi.org/10.1007/978-3-031-02375-0_34

  21. Liu, M., Yap, P.: Invariant representation of orientation fields for fingerprint indexing. Pattern Recognit. 45(7), 2532–2542 (2012). https://doi.org/10.1016/j.patcog.2012.01.014

    Article  Google Scholar 

  22. Lumini, A., Maio, D., Maltoni, D.: Continuous versus exclusive classification for fingerprint retrieval. Pattern Recognit. Lett. 18(10), 1027–1034 (1997). https://doi.org/10.1016/S0167-8655(97)00127-X

    Article  Google Scholar 

  23. Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of Fingerprint Recognition, 2nd edn (2009). https://doi.org/10.1007/978-1-84882-254-2

  24. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. CoRR abs/1912.01703 (2019)

    Google Scholar 

  25. Ratha, N.K., Bolle, R.M., Pandit, V.D., Vaish, V.: Robust fingerprint authentication using local structural similarity. In: Proceedings Fifth IEEE Workshop on Applications of Computer Vision, pp. 29–34 (2000). https://doi.org/10.1109/WACV.2000.895399

  26. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: a unified embedding for face recognition and clustering. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015). https://doi.org/10.1109/CVPR.2015.7298682

  27. Song, D., Feng, J.: Fingerprint indexing based on pyramid deep convolutional feature. In: 2017 IEEE International Joint Conference on Biometrics, pp. 200–207 (2017). https://doi.org/10.1109/BTAS.2017.8272699

  28. Song, D., Tang, Y., Feng, J.: Aggregating minutia-centred deep convolutional features for fingerprint indexing. Pattern Recognit. 88, 397–408 (2019). https://doi.org/10.1016/j.patcog.2018.11.018

    Article  Google Scholar 

  29. Takahashi, A., Koda, Y., Ito, K., Aoki, T.: Fingerprint feature extraction by combining texture, minutiae, and frequency spectrum using multi-task CNN. In: IEEE International Joint Conference on Biometrics, pp. 1–8 (2020). https://doi.org/10.1109/IJCB48548.2020.9304861

  30. Tandon, S., Namboodiri, A.M.: Transformer based fingerprint feature extraction. In: 26th International Conference on Pattern Recognition, pp. 870–876 (2022). https://doi.org/10.1109/ICPR56361.2022.9956435

  31. Tang, Y., Gao, F., Feng, J., Liu, Y.: Fingernet: an unified deep network for fingerprint minutiae extraction. In: 2017 IEEE International Joint Conference on Biometrics, pp. 108–116 (2017). https://doi.org/10.1109/BTAS.2017.8272688

  32. Watson, C.: NIST special database 14. NIST mated fingerprint card pairs 2 (MFCP2) (1970)

    Google Scholar 

  33. Watson, C.: NIST special database 4. NIST 8-bit gray scale images of fingerprint image groups (1970)

    Google Scholar 

  34. Wu, S., Liu, B., Wang, Z., Jia, Z., Feng, J.: Minutiae-awarely learning fingerprint representation for fingerprint indexing. In: IEEE International Joint Conference on Biometrics, pp. 1–8 (2022). https://doi.org/10.1109/IJCB54206.2022.10007996

  35. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Free-form image inpainting with gated convolution. In: IEEE/CVF International Conference on Computer Vision, pp. 4470–4479 (2019). https://doi.org/10.1109/ICCV.2019.00457

  36. Zhang, F., Xin, S., Feng, J.: Deep dense multi-level feature for partial high-resolution fingerprint matching. In: 2017 IEEE International Joint Conference on Biometrics, pp. 397–405 (2017). https://doi.org/10.1109/BTAS.2017.8272723

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jufu Feng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, S., Wang, Z., Jia, Z., Huang, C., Fei, H., Feng, J. (2023). Fingerprint Indexing with Minutiae-Aided Fingerprint Multiscale Representation. In: Lu, H., Blumenstein, M., Cho, SB., Liu, CL., Yagi, Y., Kamiya, T. (eds) Pattern Recognition. ACPR 2023. Lecture Notes in Computer Science, vol 14406. Springer, Cham. https://doi.org/10.1007/978-3-031-47634-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47634-1_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47633-4

  • Online ISBN: 978-3-031-47634-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics