Abstract
Trajectory prediction is critical for autonomous driving vehicles. Most existing methods tend to model the correlation between history trajectory (input) and future trajectory (output). Since correlation is just a superficial description of reality, these methods rely heavily on the i.i.d. assumption and evince a heightened susceptibility to out-of-distribution data. To address this problem, we propose an Out-of-Distribution Causal Graph (OOD-CG), which explicitly defines the underlying causal structure of the data with three entangled latent features: 1) domain-invariant causal feature (IC), 2) domain-variant causal feature (VC), and 3) domain-variant non-causal feature (VN). While these features are confounded by confounder (C) and domain selector (D). To leverage causal features for prediction, we propose a Causal Inspired Learning Framework (CILF), which includes three steps: 1) extracting domain-invariant causal feature by means of an invariance loss, 2) extracting domain variant feature by domain contrastive learning, and 3) separating domain-variant causal and non-causal feature by encouraging causal sufficiency. We evaluate the performance of CILF in different vehicle trajectory prediction models on the mainstream datasets NGSIM and INTERACTION. Experiments show promising improvements in CILF on domain generalization.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S.: Social lstm: human trajectory prediction in crowded spaces. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 961ā971 (2016)
Arjovsky, M., Bottou, L., Gulrajani, I., Lopez-Paz, D.: Invariant risk minimization. arXiv preprint arXiv:1907.02893 (2019)
Bagi, S.S.G., Gharaee, Z., Schulte, O., Crowley, M.: Generative causal representation learning for out-of-distribution motion forecasting. arXiv preprint arXiv:2302.08635 (2023)
Chen, G., Li, J., Lu, J., Zhou, J.: Human trajectory prediction via counterfactual analysis. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9824ā9833 (2021)
Deo, N., Trivedi, M.M.: Convolutional social pooling for vehicle trajectory prediction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1468ā1476 (2018)
Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2096ā2030 (2016)
Glymour, M., Pearl, J., Jewell, N.P.: Causal Inference in Statistics: A Primer. John Wiley & Sons, Hoboken (2016)
Gretton, A., Borgwardt, K.M., Rasch, M.J., Schƶlkopf, B., Smola, A.: A kernel two-sample test. J. Mach. Learn. Res. 13(1), 723ā773 (2012)
Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax. arXiv preprint arXiv:1611.01144 (2016)
Khosla, P., et al.: Supervised contrastive learning. Adv. Neural. Inf. Process. Syst. 33, 18661ā18673 (2020)
Lee, N., Choi, W., Vernaza, P., Choy, C.B., Torr, P.H., Chandraker, M.: Desire: distant future prediction in dynamic scenes with interacting agents. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 336ā345 (2017)
LefĆØvre, S., Vasquez, D., Laugier, C.: A survey on motion prediction and risk assessment for intelligent vehicles. ROBOMECH J. 1(1), 1ā14 (2014). https://doi.org/10.1186/s40648-014-0001-z
Li, S., Xue, Q., Shi, D., Li, X., Zhang, W.: Recursive least squares based refinement network for vehicle trajectory prediction. Electronics 11(12), 1859 (2022)
Liu, Y., Cadei, R., Schweizer, J., Bahmani, S., Alahi, A.: Towards robust and adaptive motion forecasting: a causal representation perspective. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17081ā17092 (2022)
Long, M., Zhu, H., Wang, J., Jordan, M.I.: Deep transfer learning with joint adaptation networks. In: International Conference on Machine Learning, pp. 2208ā2217. PMLR (2017)
Lv, F., et al.: Causality inspired representation learning for domain generalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8046ā8056 (2022)
Motiian, S., Piccirilli, M., Adjeroh, D.A., Doretto, G.: Unified deep supervised domain adaptation and generalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5715ā5725 (2017)
Nguyen, T., Do, K., Nguyen, D.T., Duong, B., Nguyen, T.: Front-door adjustment via style transfer for out-of-distribution generalisation. arXiv preprint arXiv:2212.03063 (2022)
Paden, B., ÄĆ”p, M., Yong, S.Z., Yershov, D., Frazzoli, E.: A survey of motion planning and control techniques for self-driving urban vehicles. IEEE Trans. Intell. Veh. 1(1), 33ā55 (2016)
Pearl, J.: Causality. Cambridge University Press, Cambridge (2009)
Peters, J., Janzing, D., Schƶlkopf, B.: Elements of Causal Inference: Foundations and Learning Algorithms. The MIT Press, Cambridge (2017)
Punzo, V., Borzacchiello, M.T., Ciuffo, B.: On the assessment of vehicle trajectory data accuracy and application to the next generation simulation (NGSIM) program data. Transp. Res. Part C: Emerg. Technol. 19(6), 1243ā1262 (2011)
Reichenbach, H.: The Direction of Time. Dover Publications, Mineola (1956)
Schƶlkopf, B., Janzing, D., Peters, J., Sgouritsa, E., Zhang, K., Mooij, J.: On causal and anticausal learning. arXiv preprint arXiv:1206.6471 (2012)
Schƶlkopf, B., et al.: Toward causal representation learning. Proc. IEEE 109(5), 612ā634 (2021)
Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. Adv. Neural Inf. Process. Syst. 27 (2014)
Tang, C., Salakhutdinov, R.R.: Multiple futures prediction. Adv. Neural Inf. Process. Syst. 32 (2019)
Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7167ā7176 (2017)
Yoon, C., Hamarneh, G., Garbi, R.: Generalizable feature learning in the presence of data bias and domain class imbalance with application to skin lesion classification. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 365ā373. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_40
Zhan, W., et al.: Interaction dataset: an international, adversarial and cooperative motion dataset in interactive driving scenarios with semantic maps. arXiv preprint arXiv:1910.03088 (2019)
Zhang, W., Ouyang, W., Li, W., Xu, D.: Collaborative and adversarial network for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3801ā3809 (2018)
Zhou, K., Liu, Z., Qiao, Y., Xiang, T., Loy, C.C.: Domain generalization: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 45, 4396ā4415 (2022)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Ā© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Li, S., Xue, Q., Zhang, Y., Li, X. (2023). CILF: Causality Inspired Learning Framework for Out-of-Distribution Vehicle Trajectory Prediction. In: Lu, H., Blumenstein, M., Cho, SB., Liu, CL., Yagi, Y., Kamiya, T. (eds) Pattern Recognition. ACPR 2023. Lecture Notes in Computer Science, vol 14407. Springer, Cham. https://doi.org/10.1007/978-3-031-47637-2_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-47637-2_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-47636-5
Online ISBN: 978-3-031-47637-2
eBook Packages: Computer ScienceComputer Science (R0)