Skip to main content

CILF: Causality Inspired Learning Framework for Out-of-Distribution Vehicle Trajectory Prediction

  • Conference paper
  • First Online:
Pattern Recognition (ACPR 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14407))

Included in the following conference series:

  • 552 Accesses

Abstract

Trajectory prediction is critical for autonomous driving vehicles. Most existing methods tend to model the correlation between history trajectory (input) and future trajectory (output). Since correlation is just a superficial description of reality, these methods rely heavily on the i.i.d. assumption and evince a heightened susceptibility to out-of-distribution data. To address this problem, we propose an Out-of-Distribution Causal Graph (OOD-CG), which explicitly defines the underlying causal structure of the data with three entangled latent features: 1) domain-invariant causal feature (IC), 2) domain-variant causal feature (VC), and 3) domain-variant non-causal feature (VN). While these features are confounded by confounder (C) and domain selector (D). To leverage causal features for prediction, we propose a Causal Inspired Learning Framework (CILF), which includes three steps: 1) extracting domain-invariant causal feature by means of an invariance loss, 2) extracting domain variant feature by domain contrastive learning, and 3) separating domain-variant causal and non-causal feature by encouraging causal sufficiency. We evaluate the performance of CILF in different vehicle trajectory prediction models on the mainstream datasets NGSIM and INTERACTION. Experiments show promising improvements in CILF on domain generalization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S.: Social lstm: human trajectory prediction in crowded spaces. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 961–971 (2016)

    Google Scholar 

  2. Arjovsky, M., Bottou, L., Gulrajani, I., Lopez-Paz, D.: Invariant risk minimization. arXiv preprint arXiv:1907.02893 (2019)

  3. Bagi, S.S.G., Gharaee, Z., Schulte, O., Crowley, M.: Generative causal representation learning for out-of-distribution motion forecasting. arXiv preprint arXiv:2302.08635 (2023)

  4. Chen, G., Li, J., Lu, J., Zhou, J.: Human trajectory prediction via counterfactual analysis. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9824–9833 (2021)

    Google Scholar 

  5. Deo, N., Trivedi, M.M.: Convolutional social pooling for vehicle trajectory prediction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1468–1476 (2018)

    Google Scholar 

  6. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2096–2030 (2016)

    Google Scholar 

  7. Glymour, M., Pearl, J., Jewell, N.P.: Causal Inference in Statistics: A Primer. John Wiley & Sons, Hoboken (2016)

    MATH  Google Scholar 

  8. Gretton, A., Borgwardt, K.M., Rasch, M.J., Schƶlkopf, B., Smola, A.: A kernel two-sample test. J. Mach. Learn. Res. 13(1), 723–773 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax. arXiv preprint arXiv:1611.01144 (2016)

  10. Khosla, P., et al.: Supervised contrastive learning. Adv. Neural. Inf. Process. Syst. 33, 18661–18673 (2020)

    Google Scholar 

  11. Lee, N., Choi, W., Vernaza, P., Choy, C.B., Torr, P.H., Chandraker, M.: Desire: distant future prediction in dynamic scenes with interacting agents. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 336–345 (2017)

    Google Scholar 

  12. LefĆØvre, S., Vasquez, D., Laugier, C.: A survey on motion prediction and risk assessment for intelligent vehicles. ROBOMECH J. 1(1), 1–14 (2014). https://doi.org/10.1186/s40648-014-0001-z

    Article  Google Scholar 

  13. Li, S., Xue, Q., Shi, D., Li, X., Zhang, W.: Recursive least squares based refinement network for vehicle trajectory prediction. Electronics 11(12), 1859 (2022)

    Article  Google Scholar 

  14. Liu, Y., Cadei, R., Schweizer, J., Bahmani, S., Alahi, A.: Towards robust and adaptive motion forecasting: a causal representation perspective. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17081–17092 (2022)

    Google Scholar 

  15. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Deep transfer learning with joint adaptation networks. In: International Conference on Machine Learning, pp. 2208–2217. PMLR (2017)

    Google Scholar 

  16. Lv, F., et al.: Causality inspired representation learning for domain generalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8046–8056 (2022)

    Google Scholar 

  17. Motiian, S., Piccirilli, M., Adjeroh, D.A., Doretto, G.: Unified deep supervised domain adaptation and generalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5715–5725 (2017)

    Google Scholar 

  18. Nguyen, T., Do, K., Nguyen, D.T., Duong, B., Nguyen, T.: Front-door adjustment via style transfer for out-of-distribution generalisation. arXiv preprint arXiv:2212.03063 (2022)

  19. Paden, B., ČÔp, M., Yong, S.Z., Yershov, D., Frazzoli, E.: A survey of motion planning and control techniques for self-driving urban vehicles. IEEE Trans. Intell. Veh. 1(1), 33–55 (2016)

    Article  Google Scholar 

  20. Pearl, J.: Causality. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  21. Peters, J., Janzing, D., Schƶlkopf, B.: Elements of Causal Inference: Foundations and Learning Algorithms. The MIT Press, Cambridge (2017)

    MATH  Google Scholar 

  22. Punzo, V., Borzacchiello, M.T., Ciuffo, B.: On the assessment of vehicle trajectory data accuracy and application to the next generation simulation (NGSIM) program data. Transp. Res. Part C: Emerg. Technol. 19(6), 1243–1262 (2011)

    Article  Google Scholar 

  23. Reichenbach, H.: The Direction of Time. Dover Publications, Mineola (1956)

    Book  Google Scholar 

  24. Schƶlkopf, B., Janzing, D., Peters, J., Sgouritsa, E., Zhang, K., Mooij, J.: On causal and anticausal learning. arXiv preprint arXiv:1206.6471 (2012)

  25. Schƶlkopf, B., et al.: Toward causal representation learning. Proc. IEEE 109(5), 612–634 (2021)

    Article  Google Scholar 

  26. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. Adv. Neural Inf. Process. Syst. 27 (2014)

    Google Scholar 

  27. Tang, C., Salakhutdinov, R.R.: Multiple futures prediction. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  28. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7167–7176 (2017)

    Google Scholar 

  29. Yoon, C., Hamarneh, G., Garbi, R.: Generalizable feature learning in the presence of data bias and domain class imbalance with application to skin lesion classification. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 365–373. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_40

    Chapter  Google Scholar 

  30. Zhan, W., et al.: Interaction dataset: an international, adversarial and cooperative motion dataset in interactive driving scenarios with semantic maps. arXiv preprint arXiv:1910.03088 (2019)

  31. Zhang, W., Ouyang, W., Li, W., Xu, D.: Collaborative and adversarial network for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3801–3809 (2018)

    Google Scholar 

  32. Zhou, K., Liu, Z., Qiao, Y., Xiang, T., Loy, C.C.: Domain generalization: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 45, 4396–4415 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuanpeng Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, S., Xue, Q., Zhang, Y., Li, X. (2023). CILF: Causality Inspired Learning Framework for Out-of-Distribution Vehicle Trajectory Prediction. In: Lu, H., Blumenstein, M., Cho, SB., Liu, CL., Yagi, Y., Kamiya, T. (eds) Pattern Recognition. ACPR 2023. Lecture Notes in Computer Science, vol 14407. Springer, Cham. https://doi.org/10.1007/978-3-031-47637-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47637-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47636-5

  • Online ISBN: 978-3-031-47637-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics