Skip to main content

Diffusion Init: Stronger Initialisation of Decision-Based Black-Box Attacks for Visual Object Tracking

  • Conference paper
  • First Online:
Pattern Recognition (ACPR 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14407))

Included in the following conference series:

  • 527 Accesses

Abstract

Adversarial attacks have emerged in the field of visual object tracking to mislead the tracker and result in its failure. Black-box attacks in particular have attracted increasing attention for their affinity with real-world applications. In the paradigm of decision-based black-box attacks, the magnitude of perturbation is gradually amplified, while the optimisation direction is predefined by an initial adversarial sample. Considering the pivotal role played by the initial adversarial sample in determining the success of an attack, we utilise the noise generated from the reverse process of a diffusion model as a better attacking direction. On the one hand, the diffusion model generates Gaussian noise, which formulate global information interaction, with a comprehensive impact on Transformer-based trackers. On the other hand, the diffusion model pays more attention to the target region during the inverse process, resulting in a more powerful perturbation of the target object. Our method, which is widely applicable, has been validated on a range of trackers using several benchmarking datasets. It is shown to deliver more extensive tracking performance degradation, compared to other state-of-the-art methods. We also investigate different approaches to the problem of generating the initial adversarial sample, confirming the effectiveness and rationality of our proposed diffusion initialisation method.

This work is supported in part by the National Natural Science Foundation of China (Grant No. 62106089, 62020106012).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Augustin, M., Boreiko, V., Croce, F., Hein, M.: Diffusion visual counterfactual explanations. In: Oh, A.H., Agarwal, A., Belgrave, D., Cho, K. (eds.) Advances in Neural Information Processing Systems (NeurIPS) (2022)

    Google Scholar 

  2. Bai, S., Li, Y., Zhou, Y., Li, Q., Torr, P.S.: Adversarial metric attack and defense for person re-identification. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 43(06), 2119–2126 (2021)

    Article  Google Scholar 

  3. Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: International Conference on Computer Vision (ICCV), pp. 6182–6191 (2019)

    Google Scholar 

  4. Brendel, W., Rauber, J., Bethge, M.: Decision-based adversarial attacks: reliable attacks against black-box machine learning models. In: International Conference on Learning Representations (ICLR) (2018)

    Google Scholar 

  5. Chen, J., Jordan, M.I., Wainwright, M.J.: HopSkipJumpAttack: a query-efficient decision-based attack. In: IEEE Symposium on Security and Privacy (SP), pp. 1277–1294. IEEE (2020)

    Google Scholar 

  6. Chen, X., Yan, X., Zheng, F., Jiang, Y., Ji, R.: One-shot adversarial attacks on visual tracking with dual attention. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  7. Damer, N., Fang, M., Siebke, P., Kolf, J.N., Huber, M., Boutros, F.: MorDIFF: recognition vulnerability and attack detectability of face morphing attacks created by diffusion autoencoders (2023)

    Google Scholar 

  8. Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis. In: Advances in Neural Information Processing Systems (NIPS), vol. 34, pp. 8780–8794 (2021)

    Google Scholar 

  9. Dong, Y., et al.: Efficient decision-based black-box adversarial attacks on face recognition. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7714–7722 (2019)

    Google Scholar 

  10. Guo, Q., et al.: SPARK: spatial-aware online incremental attack against visual tracking. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12370, pp. 202–219. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58595-2_13

    Chapter  Google Scholar 

  11. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 33, pp. 6840–6851 (2020)

    Google Scholar 

  12. Huang, L., Zhao, X., Huang, K.: GOT-10k: a large high-diversity benchmark for generic object tracking in the wild. IEEE Trans. Pattern Anal. Mach. Intell. 43(5), 1562–1577 (2021)

    Article  Google Scholar 

  13. Jeanneret, G., Simon, L., Jurie, F.: Adversarial counterfactual visual explanations. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 16425–16435 (2023)

    Google Scholar 

  14. Jia, S., Ma, C., Song, Y., Yang, X.: Robust tracking against adversarial attacks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12364, pp. 69–84. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58529-7_5

    Chapter  Google Scholar 

  15. Jia, S., Song, Y., Ma, C., Yang, X.: IoU attack: towards temporally coherent black-box adversarial attack for visual object tracking. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2021)

    Google Scholar 

  16. Li, B., Wu, W., Wang, Q., Zhang, F., Xing, J., Yan, J.: SiamRPN++: evolution of Siamese visual tracking with very deep networks. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4277–4286 (2019)

    Google Scholar 

  17. Liang, S., Wei, X., Yao, S., Cao, X.: Efficient adversarial attacks for visual object tracking. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12371, pp. 34–50. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58574-7_3

    Chapter  Google Scholar 

  18. Maho, T., Furon, T., Merrer, E.L.: SurFree: a fast surrogate-free black-box attack. Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10425–10434 (2020)

    Google Scholar 

  19. Mayer, C., et al.: Transforming model prediction for tracking. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8731–8740, June 2022

    Google Scholar 

  20. Mueller, M., Smith, N., Ghanem, B.: A benchmark and simulator for UAV tracking. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 445–461. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_27

    Chapter  Google Scholar 

  21. Nie, W., Guo, B., Huang, Y., Xiao, C., Vahdat, A., Anandkumar, A.: Diffusion models for adversarial purification. In: International Conference on Machine Learning (ICML) (2022)

    Google Scholar 

  22. Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 506–519 (2017)

    Google Scholar 

  23. Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. In: International Conference on Learning Representations (ICLR) (2021)

    Google Scholar 

  24. Wang, J., Lyu, Z., Lin, D., Dai, B., Fu, H.: Guided diffusion model for adversarial purification (2022)

    Google Scholar 

  25. Wu, Q., Ye, H., Gu, Y.: Guided diffusion model for adversarial purification from random noise (2022)

    Google Scholar 

  26. Wu, Y., Lim, J., Yang, M.H.: Object tracking benchmark. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 37(9), 1834–1848 (2015)

    Article  Google Scholar 

  27. Xu, T., Feng, Z., Wu, X.J., Kittler, J.: Adaptive channel selection for robust visual object tracking with discriminative correlation filters. Int. J. Comput. Vision 129, 1359–1375 (2021)

    Article  MATH  Google Scholar 

  28. Xu, T., Feng, Z., Wu, X.J., Kittler, J.: Toward robust visual object tracking with independent target-agnostic detection and effective Siamese cross-task interaction. IEEE Trans. Image Process. 32, 1541–1554 (2023)

    Article  Google Scholar 

  29. Xu, T., Wu, X.J., Kittler, J.: Non-negative subspace representation learning scheme for correlation filter based tracking. In: 2018 24th International Conference on Pattern Recognition (ICPR), pp. 1888–1893. IEEE (2018)

    Google Scholar 

  30. Xu, T., Zhu, X.F., Wu, X.J.: Learning spatio-temporal discriminative model for affine subspace based visual object tracking. Vis. Intell. 1(1), 4 (2023)

    Article  Google Scholar 

  31. Yan, B., Peng, H., Fu, J., Wang, D., Lu, H.: Learning spatio-temporal transformer for visual tracking. In: International Conference on Computer Vision (ICCV), pp. 10448–10457 (2021)

    Google Scholar 

  32. Yan, B., Wang, D., Lu, H., Yang, X.: Cooling-shrinking attack: blinding the tracker with imperceptible noises. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 987–996 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianyang Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, R., Xu, T., Zhao, S., Wu, XJ., Kittler, J. (2023). Diffusion Init: Stronger Initialisation of Decision-Based Black-Box Attacks for Visual Object Tracking. In: Lu, H., Blumenstein, M., Cho, SB., Liu, CL., Yagi, Y., Kamiya, T. (eds) Pattern Recognition. ACPR 2023. Lecture Notes in Computer Science, vol 14407. Springer, Cham. https://doi.org/10.1007/978-3-031-47637-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47637-2_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47636-5

  • Online ISBN: 978-3-031-47637-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics