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Abstract. Real-time object detection plays a vital role in various com-
puter vision applications. However, deploying real-time object detectors
on resource-constrained platforms poses challenges due to high compu-
tational and memory requirements. This paper describes a low-bit quan-
tization method to build a highly efficient one-stage detector, dubbed
as Q-YOLO, which can effectively address the performance degrada-
tion problem caused by activation distribution imbalance in traditional
quantized YOLO models. Q-YOLO introduces a fully end-to-end Post-
Training Quantization (PTQ) pipeline with a well-designed Unilateral
Histogram-based (UH) activation quantization scheme, which determines
the maximum truncation values through histogram analysis by minimiz-
ing the Mean Squared Error (MSE) quantization errors. Extensive exper-
iments on the COCO dataset demonstrate the effectiveness of Q-YOLO,
outperforming other PTQ methods while achieving a more favorable
balance between accuracy and computational cost. This research con-
tributes to advancing the efficient deployment of object detection mod-
els on resource-limited edge devices, enabling real-time detection with
reduced computational and memory overhead.
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1 Introduction

Real-time object detection is a crucial component in various computer vision
applications, such as multi-object tracking [43,42], autonomous driving [15,7],
and robotics [13,25]. The development of real-time object detectors, particularly
YOLO-based detectors, has yielded remarkable performance in terms of accu-
racy and speed. For example, YOLOv7-E6 [34] object detector achieves 55.9%
mAP on COCO 2017, outperforming both transformer-based detector SWINL
Cascade-Mask R-CNN [22,4] and convolutional based detector ConvNeXt-XL
Cascade-Mask R-CNN [36,4] in both speed and accuracy. Despite their success,
the computational cost during inference remains a challenge for real-time object
detectors on resource-limited edge devices, such as mobile CPUs or GPUs, limit-
ing their practical usage. Substantial efforts on network compression have been
⋆ † Equal contribution. ⋆ Corresponding author.
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Fig. 1. Activation value distribution histogram (with 2048 bins) of the model.21.conv
layer in YOLOv5s. The occurrence of values between 0 and -0.2785 is extremely high,
while the frequency of values above zero decreases significantly, reveals an imbalanced
pattern. min denotes the fixed minimum truncation value, while max represents the
maximum truncation value following the min-max principle. Max Q-YOLO(8) refers
to the maximum truncation value when using the Q-YOLO quantization model at 8-
bit, and Max Q-YOLO(4) indicates the maximum truncation value when applying
the Q-YOLO quantization model at 4-bit.

made towards efficient online inference [39,31,26,5]. Methods include enhanc-
ing network designs [10,37,41], conducting network search [46], network prun-
ing [9,8], and network quantization [17]. Quantization, in particular, has gained
significant popularity for deployment on AI chips by representing a network using
low-bit formats. There are two prevailing quantization methods, Quantization-
Aware Training (QAT) [17,38] and Post-Training Quantization (PTQ) [20]. Al-
though QAT generally achieves better results than PTQ, it requires training and
optimization of all model parameters during the quantization process. The need
for pretraining data and significant GPU resources makes QAT challenging to
execute. On the other hand, PTQ is a more efficient approach for quantizing
real-time object detectors.

To examine low-bit quantization for real-time object detection, we first es-
tablish a PTQ baseline using YOLOv5 [33], a state-of-the-art object detector.
Through empirical analysis on the COCO 2017 dataset, we observe notable per-
formance degradation after quantization, as indicated in Table 1. For example, a
4-bit quantized YOLOv5s employing Percentile achieves only 7.0% mAP, result-
ing in a performance gap of 30.4% compared to the original real-valued model.
We find the performance drop of quantized YOLOs can be attributed to the
activation distribution imbalance. As shown in Fig. 1, we observe high concen-
tration of values close to the lower bound and the significant decrease in occur-
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rences above zero. When employing fixed truncation values such as MinMax,
representing activation values with extremely low probabilities would consume
a considerable number of bits within the limited integer bit width, resulting in
further loss of information.

In light of the above issue, we introduce Q-YOLO, a fully end-to-end PTQ
quantization architecture for real-time object detection, as depicted in Fig. 2. Q-
YOLO quantizes the backbone, neck, and head modules of YOLO models, while
employing standard MinMax quantization for weights. To tackle the problem of
activation distribution imbalance, we introduce a novel approach called Unilat-
eral Histogram-based (UH) activation quantization. UH iteratively determines
the maximum truncation value that minimizes the quantization error through
histograms. This technique significantly reduces calibration time and effectively
addresses the discrepancy caused by quantization, optimizing the quantization
process to maintain stable activation quantization. By mitigating information
loss in activation quantization, our method ensures accurate object detection
results, thereby enabling precise and reliable low-bit real-time object detection
performance. Our contributions can be summarized as follows:

1. We introduce a fully end-to-end PTQ quantization architecture specifically
designed for real-time object detection, dubbed as Q-YOLO.

2. A Unilateral Histogram-based (UH) activation quantization method is pro-
posed to leverage histogram analysis to find the maximum truncation values,
which can effectively minimize the MSE quantization error.

3. Through extensive experiments on various object detectors, we demonstrate
that Q-YOLO outperforms baseline PTQ models by a significant margin.
The 8-bit Q-YOLO model applied on YOLOv7 achieves a 3× acceleration
while maintaining performance comparable to its full-precision counterpart
on COCO, highlighting its potential as a general solution for quantizing
real-time object detectors.

2 Related Work

2.1 Quantization

Quantized neural networks are based on low-bit weights and activations to ac-
celerate model inference and save memory. The commonly used model quan-
tization methods include quantization-aware training (QAT) and post-training
quantization (PTQ). In QAT, Zhang et al. [40] builds a binarized convolutional
neural network based on a projection function and a new updated rule during
the backpropagation. Li et al. [17] proposed an information rectification module
and distribution-guided distillation to push the bit-width in a quantized vision
transformer. TTQ [44] uses two real-valued scaling coefficients to quantize the
weights to ternary values. Zhuang et al. [45] present a low-bit (2-4 bit) quan-
tization scheme using a two-stage approach to alternately quantize the weights
and activations, providing an optimal trade-off among memory, efficiency, and
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Fig. 2. Architecture of Q-YOLO.

performance. In [12], the quantization intervals are parameterized, and optimal
values are obtained by directly minimizing the task loss of the network. ZeroQ [3]
supports uniform and mixed-precision quantization by optimizing for a distilled
dataset which is engineered to match the statistics of the batch normalization
across different network layers. [6] enabled accurate approximation for tensor
values that have bell-shaped distributions with long tails and found the entire
range by minimizing the quantization error.While QAT often requires high-level
expert knowledge and huge GPU resources for training or fine-tuning, especially
the large-scale pre-trained model. To reduce the above costs of quantization,
PTQ, which is training-free, has received more widespread attention and lots of
excellent works arise. MinMax, EMA [11] methods are commonly used to com-
press or reduce the weights of the PTQ model. MinMax normalizes the weights
and bias values in the model to a predefined range, such as [-1, 1], to reduce
the storage space and increase the inference speed. MSE quantization involves
evaluating and adjusting the quantized activation values to minimize the impact
of quantization on model performance.

2.2 Real-time Object Detection

Deep Learning based object detectors can be generally classified into two cat-
egories: two-stage and single-stage object detectors. Two-stage detectors, such
as Faster R-CNN [30], RPN [18], and Cascade R-CNN [4], first generate region
proposals and then refine them in a second stage. On the other hand, single-stage
object detectors have gained significant popularity in real-time object detection
due to their efficiency and effectiveness. These detectors aim to predict object
bounding boxes and class labels in a single pass of the neural network, elimi-
nating the need for time-consuming region proposal generation. One of the pio-
neering single-shot detectors is YOLO [27], which divides the input image into
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a grid and assigns bounding boxes and class probabilities to predefined anchor
boxes. The subsequent versions, YOLOv2 [28] and YOLOv3 [29], introduced im-
provements in terms of network architecture and feature extraction, achieving
better accuracy without compromising real-time performance. Another influen-
tial single-shot detector is SSD [21], which employs a series of convolutional
layers at different scales to detect objects of various sizes. By using feature maps
at multiple resolutions, SSD achieves high accuracy while maintaining real-time
performance. Variants of SSD, such as MobileNet-SSD [10] and Pelee [35], fur-
ther optimize the architecture to achieve faster inference on resource-constrained
devices.

Efficiency is a critical aspect of real-time object detection, especially for de-
ployment on computationally limited platforms. MobileNet[10] and its subse-
quent variants, such as MobileNetV2[32] and MobileNetV3 [14], have received
significant attention for their lightweight architectures. These networks utilize
depth-wise separable convolutions and other techniques to reduce the number of
parameters and operations without significant accuracy degradation. ShuffleNet[41]
introduces channel shuffling operations to exploit group convolutions, enabling
a trade-off between model size and computational cost. ShuffleNetV2[23] further
improves the efficiency by introducing a more efficient block design and exploring
different network scales.

3 Methodology

3.1 Preliminaries

Network Quantization Process. We first review the main steps of the Post-
Training Quantization (PTQ) process and supply the details. Firstly, the net-
work is either trained or provided as a pre-trained model using full precision and
floating-point arithmetic for weights and activations. Subsequently, numerical
representations of weights and activations are suitably transformed for quanti-
zation. Finally, the fully-quantized network is deployed either on integer arith-
metic hardware or simulated on GPUs, enabling efficient inference with reduced
memory storage and computational requirements while maintaining reasonable
accuracy levels.

Uniform Quantization. Assuming the quantization bit-width is b, the quan-
tizer Q(x|b) can be formulated as a function that maps a floating-point number
x ∈ R to the nearest quantization bin:

Q(x|b) : R→ x̂, (1)

x̂ =

{
{−2b−1, · · · , 2b−1 − 1} Signed,

{0 · · · , 2b − 1} Unsigned.
(2)

There are various quantizer Q(x|b), where uniform [11] are typically used. Uni-
form quantization is well supported on most hardware platforms. Its unsigned



6 Authors Suppressed Due to Excessive Length

quantizer Q(x|b) can be defined as:

Q(x|b) = clip(⌊ x
sx
⌉+ zpx, 0, 2b − 1), (3)

where sx (scale) and zpx (zero-point) are quantization parameters. In Eq. 4, u
(upper) and l (lower) define the quantization grid limits.

sx =
u− l

2b − 1
, zpx = clip(⌊− l

s
⌉, 0, 2b − 1). (4)

The dequantization process can be formulated as:

x̃ = (x̂− zpx)× sx. (5)

3.2 Quantization Range Setting

Quantization range setting is the process of establishing the upper and lower
clipping thresholds, denoted as u and l respectively, of the quantization grid.
The crucial trade-off in range setting lies in the balance between two types of
errors: clipping error and rounding error. Clipping error arises when data is
truncated to fit within the predefined grid limits, as described in Eq.4. Such
truncation leads to information loss and a decrease in precision in the resulting
quantized representation. On the other hand, rounding error occurs due to the
imprecision introduced during the rounding operation, as described in Eq.3. This
error can accumulate over time and have an impact on the overall accuracy of
the quantized representation. The following methods provide different trade-offs
between the two quantities.

MinMax. In the experiments, we use the MinMax method for weight quanti-
zation, where clipping thresholds lx and ux are formulated as:

lx =min(x), ux = max(x). (6)

This leads to no clipping error. However, this approach is sensitive to outliers as
strong outliers may cause excessive rounding errors.

Mean Squared Error (MSE). One way to mitigate the problem of large
outliers is by employing MSE-based range setting. In this method, we determine
lx and ux that minimize the mean squared error (MSE) between the original
and quantized tensor:

arg min
lx,ux

MSE(x,Qlx,ux), (7)

where x represents the original tensor and Qlx,ux denotes the quantized tensor
produced using the determined clipping thresholds lx and ux. The optimiza-
tion problem is commonly solved using grid search, golden section method or
analytical approximations with closed-form solution.
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3.3 Unilateral Histogram-based (UH) Activation Quantization

To address the issue of activation value imbalance, we propose a new approach
called Unilateral Histogram-based (UH) activation quantization. We first provide
an empirical study of the activation values after forward propagation through
the calibration dataset. As depicted in Figure 1, we observe a concentrated dis-
tribution of values near the lower bound, accompanied by a noticeable decrease
in occurrences above zero. Further analysis of the activation values reveals that
the empirical value of -0.2785 serves as the lower bound. This phenomenon can
be attributed to the frequent utilization of the Swish (SILU) activation function
in the YOLO series.

Algorithm 1 Unilateral Histogram-based (UH) Activation Quantization
1: Input: FP32 Histogram H with 2048 bins
2: for i in range(128, 2048) do
3: Reference distribution P ← H[0 : i]

4: Outliers count c←
∑2047

j=i H[j]
5: P [i− 1]← P [i− 1] + c
6: P ← P∑

j(P [j])

7: Candidate distribution C ← Quantize H[0 : i] into 128 levels
8: Expand C to have i bins
9: Q← C∑

j(C[j])

10: MSE[i]← Mean Squared Error(P,Q)
11: end for
12: Output: Index m for which MSE[m] is minimal.

Based on the empirical evidence, we introduce an asymmetric quantization
approach called Unilateral Histogram-based (UH) activation quantization. In
UH, we iteratively determine the maximum truncation value that minimizes the
quantization error, while keeping the minimum truncation value fixed at -0.2785,
as illustrated in the following:

ux = arg min
lx,ux

MSE(x,Qlx,ux), lx = −0.2785. (8)

To evaluate the quantization error during the search for the maximum trun-
cation value, we utilize the fp32 floating-point numbers derived from the center
values of the gathered 2048 bins, as introduces in Algorithm 1. These num-
bers are successively quantized, considering the current maximum truncation
value under consideration. Through this iterative process, we identify the op-
timal truncation range. The UH activation quantization method offers two key
advantages. Firstly, it significantly reduces calibration time. Secondly, it ensures
stable activation quantization by allowing a larger set of integers to represent the
frequently occurring activation values between 0 and -0.2785, thereby improving
quantization accuracy.
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Table 1. A comparison of various quantization methods applied to YOLOv5s [33],
YOLOv5m [33], YOLOv7 [34] and YOLOv7x[34], which have an increasing number of
parameters, on the COCO val2017 dataset [19]. The term Bits (W-A) represents the
bit-width of weights and activations. The best results are displayed in bold.

Models Method Bits Size(MB) OPs(G) AP AP50 AP75 APs APm APl

YOLOv5s [33]

Real-valued 32-32 57.6 16.5 37.4 57.1 40.1 21.6 42.3 48.9
MinMax

8-8 14.4 4.23
37.2 56.9 39.8 21.4 42.2 48.5

Percentile [16] 36.9 56.4 39.6 21.3 42.4 48.1
Q-YOLO 37.4 56.9 39.8 21.4 42.4 48.8

Percentile [16] 4-4 7.7 2.16 7.0 14.2 6.3 4.1 10.7 7.9
Q-YOLO 14.0 26.2 13.5 7.9 17.6 19.0

YOLOv5m [33]

Real-valued 32-32 169.6 49.0 45.1 64.1 49 28.1 50.6 57.8
MinMax

8-8 42.4 12.4
44.9 64 48.9 27.8 50.5 57.4

Percentile [16] 44.6 63.5 48.4 28.4 50.4 57.8
Q-YOLO 45.1 64.1 48.9 28 50.6 57.7

Percentile [16] 4-4 21.2 6.33 19.4 35.6 19.1 14.6 28.3 17.2
Q-YOLO 28.8 46 30.5 15.4 33.8 38.7

YOLOv7 [34]

Real-valued 32-32 295.2 104.7 50.8 69.6 54.9 34.9 55.6 66.3
MinMax

8-8 73.8 27.2
50.6 69.5 54.8 34.1 55.5 65.9

Percentile [16] 50.5 69.3 54.6 34.5 55.4 66.2
Q-YOLO 50.7 69.5 54.8 34.8 55.5 66.2

Percentile [16] 4-4 36.9 14.1 16.7 26.9 17.8 10.3 20.1 20.2
Q-YOLO 37.3 55.0 40.9 21.5 41.4 53.0

YOLOv7x [34]

Real-valued 32-32 25.5 189.9 52.5 71.0 56.6 36.6 57.3 68.0
MinMax

8-8 142.6 49.5
52.3 70.9 56.7 36.6 57.1 67.7

Percentile [16] 52.0 70.5 56.1 36.0 56.8 67.9
Q-YOLO 52.4 70.9 56.5 36.2 57.2 67.8

Percentile [16] 4-4 71.3 25.6 36.8 55.3 40.5 21.2 41.7 49.3
Q-YOLO 37.6 57.8 42.1 23.7 43.8 49.1

4 Experiments

In order to assess the performance of the proposed Q-YOLO detectors, we con-
ducted a comprehensive series of experiments on the widely recognized COCO
2017 [19] detection benchmark. As one of the most popular object detection
datasets, COCO 2017 [19] has become instrumental in benchmarking state-of-
the-art object detectors, thanks to its rich annotations and challenging scenarios.
Throughout our experimental analysis, we employed standard COCO metrics on
the bounding box detection task to evaluate the efficacy of our approach.

4.1 Implementation Details

We randomly selected 1500 training images from the COCO train2017 dataset
[19] as the calibration data, which served as the foundation for optimizing the
model parameters. Additionally, the performance evaluation took place on the
COCO val2017 dataset [19], comprising 5000 images. The image size is set to
640x640.
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Table 2. A comparison of Symmetrical Analysis of Activation Value Quantization.
Asymmetric indicates the use of an asymmetric activation value quantization scheme,
while Symmetric refers to the symmetric quantization of activation values.

models Bits Symmetry AP AP50 AP75 APs APm APl

YOLOv5s [33]

Real-valued - 37.4 57.1 40.1 21.6 42.3 48.9

6-6 Asymmetric 35.9 55.7 38.3 20.4 41.0 47.6
Symmetric 34.4 53.9 37.0 19.3 39.8 45.0

4-4 Asymmetric 14.0 26.2 13.5 7.9 17.6 19.0
Symmetric 2.7 5.9 2.2 1.3 4.2 4.6

YOLOv5m [33]

Real-valued - 45.1 64.1 49.0 28.1 50.6 57.8

6-6 Asymmetric 44.0 63.1 47.7 28 49.9 56.8
Symmetric 42.4 61.1 46.0 25.3 48.3 55.9

4-4 Asymmetric 28.8 46.0 30.5 15.4 33.8 38.7
Symmetric 11.3 24.8 8.6 7.5 15.2 14.5

In our experiments, unless otherwise noted, we employed symmetric channel-
wise quantization for weights and asymmetric layer-wise quantization for acti-
vations. To ensure a fair and unbiased comparison, we consistently applied the
MinMax approach for quantizing weights. The input and output layers of the
model are more sensitive to the loss of accuracy. In order to maintain the over-
all performance of the model, the original accuracy of these layers is usually
retained. We also follow this practice.

4.2 Main results

We apply our proposed Q-YOLO to quantize YOLOv5s [33], YOLOv5m [33],
YOLOv7 [34] and YOLOv7x [34], which have an increasing number of parame-
ters.The results of the full-precision model, as well as the 8-bit and 4-bit quan-
tized models using MinMax, Percentile, and Q-YOLO methods, are all presented
in Table. 1.

Table. 1 lists the comparison of several quantization approaches and detec-
tion methods in computing complexity, storage cost. Our Q-YOLO significantly
accelerates computation and reduces storage requirements for various YOLO
detectors. Similarly, in terms of detection accuracy, when using Q-YOLO to
quantize the YOLOv5 series models to 8 bits, there is virtually no decline in
the average precision (AP) value compared to the full-precision model. As the
number of model parameters increases dramatically, quantizing the YOLOv7 se-
ries models to 8 bits results in an extremely slight decrease in accuracy. When
quantizing models to 4 bits, the accuracy experiences a significant loss due to
the reduced expressiveness of 4-bit integer representation. Particularly, when us-
ing the MinMax quantization method, the model loses all its accuracy; whereas
the Percentile method, which roughly truncates 99.99% of the extreme values,
fails to bring notable improvement. Differently, Q-YOLO successfully identifies a
more appropriate scale for quantization, resulting in a considerable enhancement
compared to conventional Post-Training Quantization (PTQ) methods.
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Table 3. A comparison of Quantization type. The term only weights signifies that
only the weights are quantized, only activation indicates that only the activation
values are quantized, and activation+weights represents the quantization of both
activation values and weights.

models Bits Quantization type AP AP50 AP75 APs APm APl

YOLOv5s[33]

Real-valued - 37.4 57.1 40.1 21.6 42.3 48.9
6-32 only weights 36.7(-0.7) 56.6 39.3 20.9 41.4 48.4
32-6 only activation 36.6(-0.8) 56.2 39.3 21.0 42.0 47.9
6-6 weights+activation 35.9 55.7 38.3 20.4 41.0 47.6
4-32 only weights 19.6(-16.3) 35.6 19.3 11.3 22.5 25.7
32-4 only activation 30.6(-5.3) 49.1 32.6 17.0 36.7 40.7
4-4 weights+activation 14.0 26.2 13.5 7.9 17.6 19

YOLOv5m[33]

Real-valued - 45.1 64.1 49.0 28.1 50.6 57.8
6-32 only weights 44.7(-0.4) 63.9 48.6 28.0 50.3 57.3
32-6 only activation 44.3(-0.8) 63.4 48.1 28.4 50.3 57.2
6-6 weights+activation 44 63.1 47.7 28.0 49.9 56.8
4-32 only weights 34.6(-9.4) 54.0 37.3 20.0 39.2 45.3
32-4 only activation 37.7(-6.3) 57.3 41 .8 23.7 44.1 51.0
4-4 weights+activation 28.8 46.0 30.5 15.4 33.8 38.7

4.3 Ablation Study

Symmetry in Activation Quantization. Nowadays, quantization schemes
are often subject to hardware limitations; for instance, NVIDIA[24] only sup-
ports symmetric quantization, as it is more inference-speed friendly. Therefore,
discussing the symmetry in activation value quantization is meaningful. Table. 2
presents a comparison of results using Q-YOLO for symmetric and asymmetric
quantization, with the latter exhibiting higher accuracy. The range of negative
activation values lies between 0 and -0.2785, while the range of positive activa-
tion values exceeds that of the negative ones. If we force equal integer expression
bit numbers on both positive and negative sides, the accuracy will naturally de-
crease. Moreover, this decline becomes more pronounced as the quantization bit
number decreases.

Quantization Type. In Table. 3, we analyze the impact of different quantiza-
tion types on the performance of the YOLOv5s and YOLOv5m models, consid-
ering three cases: quantizing only the weights (only weights), quantizing only the
activation values (only activation), and quantizing both weights and activation
values (weights+activation). The results demonstrate that, compared to quan-
tizing the activation values, quantizing the weights consistently induces larger
performance degradation. Additionally, the lower the number of bits, the greater
the loss incurred by quantization. In YOLO, the weights learned by a neural net-
work essentially represent the knowledge acquired by the network, making the
precision of the weights crucial for model performance. In contrast, activation
values serve as intermediate representations of input data propagating through
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Table 4. The inference speed of the quantized model is essential. The quantization
scheme adopts uniform quantization, with single-image inference mode and an image
size of 640*640. TensorRT [1]is selected as the GPU inference library, while Open-
VINO [2] is chosen for the CPU inference library

models Bits AP GPU speed /ms Intel CPU speed /ms
RTX 4090 Tesla T4 i7-12700H(x86) i9-10900(x86)

YOLOv5s 32-32 37.4 4.9 7.1 48.7 38.7
8-8 37.3 3.0 4.5 33.6 23.4

YOLOv7 32-32 50.8 16.8 22.4 269.8 307.8
8-8 50.6 5.4 7.8 120.4 145.2

the network, and can tolerate some degree of quantization error to a certain
extent.

4.4 Inference speed

To practically verify the acceleration benefits brought about by our quantiza-
tion scheme, we conducted inference speed tests on both GPU and CPU plat-
forms. For the GPU, we selected the commonly used desktop GPU NVIDIA RTX
4090 [24] and the NVIDIA Tesla T4 [24] , often used in computing centers for
inference tasks. Due to our limited CPU resources, we only tested Intel prod-
ucts, the i7-12700H and i9-10900, both of which have x86 architecture. For
deployment tools, we chose TensorRT [1] and OpenVINO [2]. The entire process
involved converting the weights from the torch framework into an ONNX model
with QDQ nodes and then deploying them onto specific inference frameworks.
The inference mode was set to single-image serial inference, with an image size of
640x640. As most current inference frameworks only support symmetric quanti-
zation and 8-bit quantization, we had to choose a symmetric 8-bit quantization
scheme, which resulted in an extremely small decrease in accuracy compared
to asymmetric schemes. As shown in Table. 4, the acceleration is extremely sig-
nificant, especially for the larger YOLOv7 model, wherein the speedup ratio
when using a GPU even exceeded 3× compared to the full-precision model.
This demonstrates that applying quantization in real-time detectors can bring
about a remarkable acceleration.

5 Conclusions

Real-time object detection is crucial in various computer vision applications.
However, deploying object detectors on resource-constrained platforms poses
challenges due to high computational and memory requirements. This paper
introduces Q-YOLO, a highly efficient one-stage detector built using a low-bit
quantization method to address the performance degradation caused by acti-
vation distribution imbalance in traditional quantized YOLO models. Q-YOLO
employs a fully end-to-end Post-Training Quantization (PTQ) pipeline with a
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well-designed Unilateral Histogram-based (UH) activation quantization scheme.
Extensive experiments conducted on the COCO dataset demonstrate the ef-
fectiveness of Q-YOLO. It outperforms other PTQ methods while achieving a
favorable balance between accuracy and computational cost. This research sig-
nificantly contributes to advancing the efficient deployment of object detection
models on resource-limited edge devices, enabling real-time detection with re-
duced computational and memory requirements.
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