Abstract
The multiplicative speckle noise and additive background noise of an infrared image are significant elements impacting image quality. To address the issue of image degradation caused by noise superposition and enhance the infrared image quality in terms of noise suppression, a composite restoration method based on adaptive threshold multi-parameter wavelet is proposed. First, based on the noise distribution characteristics of the infrared image, the multiplicative noise in the infrared image is transformed into additive noise, and the image is restored using the wavelet transform coefficient of the converted infrared image. Then, the benefits and drawbacks of soft and hard threshold functions are analysed in depth, and an adaptive double threshold function with adjustable parameters is developed. Finally, a fast non-local means method is used to suppress the effect of background noise on image quality. The experimental results show that the proposed method reduces 111.03 dB on average over the MSE index, 6.67 dB on the PSNR index and 6.92 dB on the SNR index.
This work was supported by National Natural Science Foundation of China (No. 12373100), and the Fundamental Research Funds for the Central Universities.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Johnson, J.E., et al.: Comparison of long-wave infrared imaging and visible/near-infrared imaging of vegetation for detecting leaking CO2 gas. IEEE J-STARS 7(5), 1651–1657 (2014)
Panigrahy, C., Seal, A., Mahato, N.K.: Parameter adaptive unit-linking dual-channel PCNN based infrared and visible image fusion. Neurocomputing 514, 21–38 (2022)
Zhang, Z., Chen, X., Liu, L., Li, Y.F., Deng, Y.B.: A sparse representation denoising algorithm for visible and infrared image based on orthogonal matching pursuit. Signal Image Video Process. 14(4), 737–745 (2020)
Shen, Y., et al.: Improved Anscombe transformation and total variation for denoising of lowlight infrared images. Infrared Phys. Technol. 93, 192–198 (2018)
He, Z.C., Wei, B.L., Zhou, L.F., Zhou, E.L., Li, E., Xing, Z.Y.: The crack detection of acoustic metamaterials using a weighted mode shape-wavelet-based strategy. Eng. Anal. Bound. Elements 145, 286–298 (2022)
Agah, G.R., Rahideh, A., Khodadadzadeh, H., Khoshnazar, S.M., Kia, S.H.: Broken rotor bar and rotor eccentricity fault detection in induction motors using a combination of discrete wavelet transform and Teager-Kaiser energy operator. IEEE Trans. Energy Convers. 37(3), 2199–2206 (2022)
Donoho, D.L.: De-noising by soft-thresholding. IEEE Trans. Inf. Theory 41(3), 613–627 (1995)
Chen, G.Y., Bui, T.D., Krzyzak, A.: Image denoising with neighbour dependency and customized wavelet and threshold. Pattern Recognit. 38(1), 115–124 (2005)
Lu, R.L., Wu, T.J., Yu, L.: Performance analysis of threshold denoising via different kinds of mother wavelets. Spectroscopy and Spectral Analysis 24(7), 826–829 (2004)
Guo, X.L., Yang, K.L., Guo, Y.X.: Hydraulic pressure signal denoising using threshold self-learning wavelet algorithm. J. Hydrodyn. 20(4), 433–439 (2008)
Smith, C.B., Agaian, S., Akopian, D.: A wavelet-denoising approach using polynomial threshold operators. IEEE Signal Process. Lett. 15, 906–909 (2008)
Poornachandra, S.: Wavelet-based denoising using subband dependent threshold for ECG signals. Digital Signal Process. 18(1), 49–55 (2008)
Guo, H., Yue, L.H., Song, P., Tan, Y.M., Zhang, L.J.: Denoising of an ultraviolet light received signal based on improved wavelet transform threshold and threshold function. Appl. Opt. 60(28), 8983–8990 (2021)
Chen, Z.: Signal recognition for English speech translation based on improved wavelet denoising method. Adv. Math. Phys. 9, 6811192 (2021)
Zhang, N., Lin, P., Xu, L.: Application of weak signal denoising based on improved wavelet threshold. IOP Conf. Ser.: Mater. Sci. Eng. 751(1), 12073 (2020)
Kumar, A., Tomar, H., Mehla, V.K., Komaragiri, R., Kumar, M.: Stationary wavelet transform based ECG signal denoising method. ISA Trans. 114, 251–262 (2021)
Binbin, Y.: An improved infrared image processing method based on adaptive threshold denoising. EURASIP J. Image Video Process. 1, 5 (2019)
Kim, D.C., Kim, M., Yoon, I., Momjian, E., Kim, J.H., Letai, J., Evans, A.S.: Adaptive optics and VLBA imaging observations of recoiling supermassive black hole candidates. Monthly Notices Roy. Astron. Soc. 517(3), 4081–4091 (2022)
Shao, Y.Y., et al.: Infrared image stripe noise removing using least squares and gradient domain guided filtering. Infrared Phys. Technol. 119, 103968 (2021)
Guan, J.T., Lai, R., Xiong, A., Liu, Z.S., Gu, L.: Fixed pattern noise reduction for infrared images based on cascade residual attention CNN. Neurocomputing 377, 301–313 (2020)
Jiang, H.X., et al.: A resource-efficient parallel architecture for infrared image stripe noise removal based on the most stable window. Infrared Phys. Technol. 97, 258–269 (2019)
Jiang, M.: Edge enhancement and noise suppression for infrared image based on feature analysis. Infrared Phys. Technol. 91, 142–152 (2018)
Wang, W.J., Wei, X.G., Li, J., Wang, G.Y.: Noise suppression algorithm of short-wave infrared star image for daytime star sensor. Infrared Phys. Technol. 85, 382–394 (2017)
Zhang, J., Zhou, X., Li, L., Hu, T., Fansheng, C.: A combined stripe noise removal and deblurring recovering method for thermal infrared remote sensing images. IEEE Trans. Geosci. Remote Sens. 60, 5003214 (2022)
Xiao, P., Guo, Y., Zhuang, P.: Removing stripe noise from infrared cloud images via deep convolutional networks. IEEE Photon. J. 10(4), 7801114 (2018)
Kuang, X., Sui, X., Liu, Y., Chen, Q., Gu, G.: Single infrared image optical noise removal using a deep convolutional neural network. IEEE Photon. J. 10(2), 78006154 (2018)
Bal, A., Banerjee, M., Sharma, P., Maitra, M.: An efficient wavelet and curvelet-based PET image denoising technique. Med. Biol. Eng. Comput. 57(12), 2567–2598 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Liu, S., Chen, P., Shen, Z., Wang, Z. (2023). Composite Restoration of Infrared Image Based on Adaptive Threshold Multi-parameter Wavelet. In: Lu, H., Blumenstein, M., Cho, SB., Liu, CL., Yagi, Y., Kamiya, T. (eds) Pattern Recognition. ACPR 2023. Lecture Notes in Computer Science, vol 14408. Springer, Cham. https://doi.org/10.1007/978-3-031-47665-5_31
Download citation
DOI: https://doi.org/10.1007/978-3-031-47665-5_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-47664-8
Online ISBN: 978-3-031-47665-5
eBook Packages: Computer ScienceComputer Science (R0)