Skip to main content

Composite Restoration of Infrared Image Based on Adaptive Threshold Multi-parameter Wavelet

  • Conference paper
  • First Online:
Pattern Recognition (ACPR 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14408))

Included in the following conference series:

  • 407 Accesses

Abstract

The multiplicative speckle noise and additive background noise of an infrared image are significant elements impacting image quality. To address the issue of image degradation caused by noise superposition and enhance the infrared image quality in terms of noise suppression, a composite restoration method based on adaptive threshold multi-parameter wavelet is proposed. First, based on the noise distribution characteristics of the infrared image, the multiplicative noise in the infrared image is transformed into additive noise, and the image is restored using the wavelet transform coefficient of the converted infrared image. Then, the benefits and drawbacks of soft and hard threshold functions are analysed in depth, and an adaptive double threshold function with adjustable parameters is developed. Finally, a fast non-local means method is used to suppress the effect of background noise on image quality. The experimental results show that the proposed method reduces 111.03 dB on average over the MSE index, 6.67 dB on the PSNR index and 6.92 dB on the SNR index.

This work was supported by National Natural Science Foundation of China (No. 12373100), and the Fundamental Research Funds for the Central Universities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Johnson, J.E., et al.: Comparison of long-wave infrared imaging and visible/near-infrared imaging of vegetation for detecting leaking CO2 gas. IEEE J-STARS 7(5), 1651–1657 (2014)

    Google Scholar 

  2. Panigrahy, C., Seal, A., Mahato, N.K.: Parameter adaptive unit-linking dual-channel PCNN based infrared and visible image fusion. Neurocomputing 514, 21–38 (2022)

    Article  Google Scholar 

  3. Zhang, Z., Chen, X., Liu, L., Li, Y.F., Deng, Y.B.: A sparse representation denoising algorithm for visible and infrared image based on orthogonal matching pursuit. Signal Image Video Process. 14(4), 737–745 (2020)

    Article  Google Scholar 

  4. Shen, Y., et al.: Improved Anscombe transformation and total variation for denoising of lowlight infrared images. Infrared Phys. Technol. 93, 192–198 (2018)

    Article  Google Scholar 

  5. He, Z.C., Wei, B.L., Zhou, L.F., Zhou, E.L., Li, E., Xing, Z.Y.: The crack detection of acoustic metamaterials using a weighted mode shape-wavelet-based strategy. Eng. Anal. Bound. Elements 145, 286–298 (2022)

    Article  MathSciNet  Google Scholar 

  6. Agah, G.R., Rahideh, A., Khodadadzadeh, H., Khoshnazar, S.M., Kia, S.H.: Broken rotor bar and rotor eccentricity fault detection in induction motors using a combination of discrete wavelet transform and Teager-Kaiser energy operator. IEEE Trans. Energy Convers. 37(3), 2199–2206 (2022)

    Google Scholar 

  7. Donoho, D.L.: De-noising by soft-thresholding. IEEE Trans. Inf. Theory 41(3), 613–627 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, G.Y., Bui, T.D., Krzyzak, A.: Image denoising with neighbour dependency and customized wavelet and threshold. Pattern Recognit. 38(1), 115–124 (2005)

    Article  Google Scholar 

  9. Lu, R.L., Wu, T.J., Yu, L.: Performance analysis of threshold denoising via different kinds of mother wavelets. Spectroscopy and Spectral Analysis 24(7), 826–829 (2004)

    Google Scholar 

  10. Guo, X.L., Yang, K.L., Guo, Y.X.: Hydraulic pressure signal denoising using threshold self-learning wavelet algorithm. J. Hydrodyn. 20(4), 433–439 (2008)

    Article  Google Scholar 

  11. Smith, C.B., Agaian, S., Akopian, D.: A wavelet-denoising approach using polynomial threshold operators. IEEE Signal Process. Lett. 15, 906–909 (2008)

    Article  Google Scholar 

  12. Poornachandra, S.: Wavelet-based denoising using subband dependent threshold for ECG signals. Digital Signal Process. 18(1), 49–55 (2008)

    Article  Google Scholar 

  13. Guo, H., Yue, L.H., Song, P., Tan, Y.M., Zhang, L.J.: Denoising of an ultraviolet light received signal based on improved wavelet transform threshold and threshold function. Appl. Opt. 60(28), 8983–8990 (2021)

    Article  Google Scholar 

  14. Chen, Z.: Signal recognition for English speech translation based on improved wavelet denoising method. Adv. Math. Phys. 9, 6811192 (2021)

    MathSciNet  Google Scholar 

  15. Zhang, N., Lin, P., Xu, L.: Application of weak signal denoising based on improved wavelet threshold. IOP Conf. Ser.: Mater. Sci. Eng. 751(1), 12073 (2020)

    Google Scholar 

  16. Kumar, A., Tomar, H., Mehla, V.K., Komaragiri, R., Kumar, M.: Stationary wavelet transform based ECG signal denoising method. ISA Trans. 114, 251–262 (2021)

    Article  Google Scholar 

  17. Binbin, Y.: An improved infrared image processing method based on adaptive threshold denoising. EURASIP J. Image Video Process. 1, 5 (2019)

    Article  Google Scholar 

  18. Kim, D.C., Kim, M., Yoon, I., Momjian, E., Kim, J.H., Letai, J., Evans, A.S.: Adaptive optics and VLBA imaging observations of recoiling supermassive black hole candidates. Monthly Notices Roy. Astron. Soc. 517(3), 4081–4091 (2022)

    Article  Google Scholar 

  19. Shao, Y.Y., et al.: Infrared image stripe noise removing using least squares and gradient domain guided filtering. Infrared Phys. Technol. 119, 103968 (2021)

    Article  Google Scholar 

  20. Guan, J.T., Lai, R., Xiong, A., Liu, Z.S., Gu, L.: Fixed pattern noise reduction for infrared images based on cascade residual attention CNN. Neurocomputing 377, 301–313 (2020)

    Article  Google Scholar 

  21. Jiang, H.X., et al.: A resource-efficient parallel architecture for infrared image stripe noise removal based on the most stable window. Infrared Phys. Technol. 97, 258–269 (2019)

    Article  Google Scholar 

  22. Jiang, M.: Edge enhancement and noise suppression for infrared image based on feature analysis. Infrared Phys. Technol. 91, 142–152 (2018)

    Article  Google Scholar 

  23. Wang, W.J., Wei, X.G., Li, J., Wang, G.Y.: Noise suppression algorithm of short-wave infrared star image for daytime star sensor. Infrared Phys. Technol. 85, 382–394 (2017)

    Article  Google Scholar 

  24. Zhang, J., Zhou, X., Li, L., Hu, T., Fansheng, C.: A combined stripe noise removal and deblurring recovering method for thermal infrared remote sensing images. IEEE Trans. Geosci. Remote Sens. 60, 5003214 (2022)

    Google Scholar 

  25. Xiao, P., Guo, Y., Zhuang, P.: Removing stripe noise from infrared cloud images via deep convolutional networks. IEEE Photon. J. 10(4), 7801114 (2018)

    Article  Google Scholar 

  26. Kuang, X., Sui, X., Liu, Y., Chen, Q., Gu, G.: Single infrared image optical noise removal using a deep convolutional neural network. IEEE Photon. J. 10(2), 78006154 (2018)

    Article  Google Scholar 

  27. Bal, A., Banerjee, M., Sharma, P., Maitra, M.: An efficient wavelet and curvelet-based PET image denoising technique. Med. Biol. Eng. Comput. 57(12), 2567–2598 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanshan Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, S., Chen, P., Shen, Z., Wang, Z. (2023). Composite Restoration of Infrared Image Based on Adaptive Threshold Multi-parameter Wavelet. In: Lu, H., Blumenstein, M., Cho, SB., Liu, CL., Yagi, Y., Kamiya, T. (eds) Pattern Recognition. ACPR 2023. Lecture Notes in Computer Science, vol 14408. Springer, Cham. https://doi.org/10.1007/978-3-031-47665-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47665-5_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47664-8

  • Online ISBN: 978-3-031-47665-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics